Preferred Language
Articles
/
joe-1524
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 15 2020
Journal Name
Journal Of Engineering Science And Technology
INFLUENCE OF A RIVER WATER QUALITY ON THE EFFICIENCY OF WATER TREATMENT USING ARTIFICIAL NEURAL NETWORK
...Show More Authors

Publication Date
Fri Jan 01 2021
Journal Name
Environmental Pollution
Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
...Show More Authors

View Publication
Crossref (102)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 04 2017
Journal Name
Applied Research Journal
ASSESSMENT OF SHEAR AND COMPRESSIBILITY PROPERTIES OF ASPHALT STABILIZED COLLAPSIBLE SOIL
...Show More Authors

One of the major problems facing the road construction engineer is the collapsible granular soil which may be used for embankment construction. Problems appears when such compacted soil come in touch with water, it exhibits cracking and uncontrolled settlement. Collapsible soils are defined as any unsaturated soil that goes through a radical rearrangement of practice and great loss of volume upon wetting, with or without additional loading. An attempt has been made in this investigation to stabilize the collapsible soil of Nasiriya with asphalt emulsion. Specimens of pure and asphalt emulsion stabilized soil have been prepared using optimum fluid content and tested. The first group of specimens of (60x60x20) cm have been tested for direct s

... Show More
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology & Applied Science Research
Static Shear Strength of a Non-Prismatic Beam with Transverse Openings
...Show More Authors

In this study, a predicated formula is been proposed to find the shear strength of non-prismatic beams with or without openings. It depends on the contributions of concrete shear strength considering the beam depth variation and existing openings, shear steel reinforcements and defines the critical shear section, the effect of diagonal shear reinforcement, the effect of inclined tensile steel reinforcement, and the compression chord influence. The verification of the proposed formula has been conducted on the experimental test results of 26 non-prismatic beams with or without openings at the same loading conditions. The results reflect that the predicted formula finds the shear capacity of non-prismatic beams with openings, it is co

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors

View Publication
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network
...Show More Authors

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
View Publication Preview PDF
Crossref (6)
Crossref