Preferred Language
Articles
/
joe-1480
Numerical analysis of a concrete foundation under a combination of a dynamic and a seismic load

Improving in assembling technology has provided machines of higher evaluation with better resistances and managed behavior. This machinery led to remarkably higher dynamic forces and therefore higher stresses. In this paper, a dynamic investigation of rectangular machine diesel and gas engines foundation at the top surface of one-layer dry sand with various states (i.e., loose, medium and dense) was carried out. The dynamic investigation is performed numerically by utilizing limited component programming, PLAXIS 3D. The soil is accepted as flexible totally plastic material submits to Mohr-Coulomb yield basis. A harmonic load is applied at the foundation with amplitude of 10 kPa at a frequency of (10, 15 and 20) HZ and seismic load is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric statement is completed to evaluate the effect of changing the relative density, embedded depth and frequency of the machine. It has been noticed that the relative density plays an important role in the resistance of settlement, as it increases the resistance of the soil to the applied loads because the dense soil is stiffer. While total stress and displacement of different relative density decrease at the time when increasing the foundations' embedding, the ratio was (15%) at the depths (Df=0 and Df=2). In addition, it has been noticed that there decrease of displacement when the frequency value changes from (10 to 20) Hz.  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 20 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Circular Tunnel Alignment Under Seismic Loading

The continuous increase in population has led to the development of underground structures like tunnels to be of great importance due to several reasons. One of these reasons is that tunnels do not affect the living activities on the surface, nor they interfere with the existing traffic network. More importantly, they have a less environmental impact than conventional highways and railways. This paper focuses on using numerical analysis of circular tunnels in terms of their behavior during construction and the deformations that may occur due to overburden and seismic loads imposed on them. In this study, the input data are taken from an existing Cairo metro case study; results were found for the lateral and vertical displacements, the Peak

... Show More
Crossref (3)
Crossref
View Publication
Publication Date
Sun Jun 06 2021
Journal Name
Engineering, Technology & Applied Science Research
Evaluation of the Variation in Dynamic Load Factor Throughout a Highly Skewed Steel I-Girder Bridge

The Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was u

... Show More
Crossref (4)
Crossref
View Publication
Publication Date
Mon May 01 2017
Journal Name
2017 24th International Conference On Telecommunications (ict)
Crossref (7)
Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Chaos, Solitons & Fractals
Scopus (19)
Crossref (15)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
A Soil-Pile Response under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction
Abstract<p>Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory</p> ... Show More
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Numerical Assessment of Pipe Pile Axial Response under Seismic Excitation

In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Finite Element Analysis of Raft Foundation under Coupled Moment

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Under Reamed Piles Behavior Under Dynamic Loading in Sandy Soil

Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numer­ical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
A Real-Time Fuzzy Load Flow and Contingency Analysis Based on Gaussian Distribution System

Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed  method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Seismic performance of Al-wand earth dam: numerical analysis
Abstract<p>The seismic can be threatened the stability of the flexible body of the earth dam and can cause completely damaged or deformation on their embankment. Therefore, a geotechnical engineer needs to know the effect of earthquakes on earth structures. The change in the seismic zone that recently Iraq affected is the reason for this research, in general, in 2017, the whole of Iraq, and in particular the region, where the Al-Wand earth dam (the subject of the study) is located, was exposed to several earthquakes. This research project mainly aims to study the behavior of Al-Wand earth dam under seismic load in different conditions by simulating Al-Wand earth dam through numerical modeling an</p> ... Show More
Scopus (5)
Crossref (1)
Scopus Crossref
View Publication