Preferred Language
Articles
/
joe-145
Sliding Mode Vibration Suppression Control Design for a Smart Beam
...Show More Authors

Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm.  It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the cantilever beam according to the FEM. These states are most controllable and observable. The stability and control performance for the proposed SMC are proved using candidate Lyapunov function and the equivalent control concept. The control spillover, which is the sources of instability, is completely avoided as ensured within the control performance proof.

            Numerical simulations are preformed to test the vibration attenuation ability of the proposed SMC. For 15 mm initial tip displacement, the piezoelectric actuator was found able to reduce the tip displacement to about (0.2) mm within (2.5 s), while it is equal to (3.5) mm with the open loop case. Moreover, the induced chattering in system response, due to the discontinuous control action, is removed by approximating the signum function by a continuous arctan function. As a result  a smoother response are obtained with the same control performance as can be shown in the sliding variable, the control input voltage and the tip displacement plots.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
A Fuzzy Logic Controller Based Vector Control of IPMSM Drives
...Show More Authors

This paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 31 2011
Journal Name
Al-khwarizmi Engineering Journal
Path Planning Control for Mobile Robot
...Show More Authors

Autonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.

This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 28 2018
Journal Name
Mechanical Sciences
Mechatronic design and genetic-algorithm-based MIMO fuzzy control of adjustable-stiffness tendon-driven robot finger
...Show More Authors

Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Appraisal of intelligent notification system for smart university campus based internet of objects for social activities
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Artificial Intelligence in Smart Agriculture: Modified Evolutionary Optimization Approach for Plant Disease Identification
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Conference Proceedings Of The Society For Experimental Mechanics Series
A comparative study of mode decomposition to relate next-ERA, PCA, and ICA modes
...Show More Authors

This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms. A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and (iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The mode decomposition results are also compared using

... Show More
Scopus (1)
Scopus
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Anti-Disturbance Compensator Design for Unmanned Aerial Vehicle
...Show More Authors

In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. A minimization to a

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Slab-beam Interaction in One-way Floor Systems
...Show More Authors

This study focuses on the slab-beam interaction in one-way systems. In the context of this study, slab-beam interaction means how beam deflection can affect moment distribution in one-way slabs. This interaction is usually neglected in the traditional approximate analysis that is adopted in engineering practice and design codes. Slab positive moments have been considered as indicators on the accuracy of approximate methods, as they overestimate negative moments while underestimating positive moments.

After proposing of effecting parameters in slab-beam interaction including of panel length and width, beam dimensions, and slab thickness, Buckingham’s  theorem has been adopted to transform the dimensional-mo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Proceedings Of The Institution Of Civil Engineers - Structures And Buildings
Effect of soil saturation on load transfer in a pile excited by pure vertical vibration
...Show More Authors

A comparison between the resistance capacity of a single pile excited by two opposite rotary machines embedded in dry and saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass 0·012 kg and eccentric distance 20 mm representing the two opposite rotary machines, an aluminum shaft with 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into consideration, pile embedment depth ratio (L/d; length to diameter) and operating freq

... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
2019 4th Scientific International Conference Najaf (sicn)
Modeling and Experimental Research of Vibration N Properties of A Multi-Layer Printed Circuit Board
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Crossref