In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.
This work represents the set of measurements of radon and thoron concentrations levels of soil-gas in Al-Kufa city in Iraq using electric Radon meter (RAD-7). Radon and thoron concentration were measured in soil-gas in 20 location for three depth of (50, 100 and 150) cm.
The results show that the emanation rate of radon and thoron gas varied from location to anther, depending on the geological formation. The Radon concentration in soil has been found to vary from (12775±400) Bq/m3 at 150 cm depth in location (sample K2) to (41.45±17) Bq/m3, for depth 150 cm in location (sample K20). The thoron concentration in soil has been found to vary from (198±8.5) Bq/m3 at 150 cm depth in location samples (K1 & K2) to undetected in the mos
Objective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreMultilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily.  
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreGas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show MoreRecords of two regionalized variables were processed for each of porosity and permeability of reservoir rocks in Zubair Formation (Zb-109) south Iraq as an indication of the most important reservoir property which is the homogeneity , considering their important results in criterion most needed for primary and enhanced oil reservoir .Z and F tests that were calculated for the two above mentioned properties of pair units of Zubair Formation have shown the difference in depositional energy and different diagenesis between units IL and AB , DJ and AB , and the similarity in grains size , sorting degree , depositional environment and pressure gradients between IL and AB units , LS and IL units ; also the difference in the properties above betw
... Show MoreA new Schiff base (4-chlorophenyl)(phenyl methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate=HL=C29H24ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate (CephH)=(C16H19N3O5S.H2O) and 4- chlorobenzophenone. Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), in 50% (v/v) ethanol – water medium in aqueous ethanol(1:1) and Saccharin(C7H5NO3S) containing sodium hydroxide. Several physical tools in particular; IR, C:H:N , 1H NMR,13C NMR for ligand, melting point, molar conductance, magnetic moment. and determination of the percentage of the metal in the complexes by flame(AAS
... Show Morenew Schiff base 4-chlorophenyl)methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate= (HL)= C23H20 ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate(CephH)=(C16H19N3O5S.H2O) and 4-chlorobenzaldehyde . Figure(1) Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II),Co(II),Ni(II),Cu(II),Zn(II) and Cd (II), in 50% (v/v) ethanol –water medium (SacH ) .in aqueous ethanol(1:1) containing and Saccharin(C7H5NO3S) = sodium hydroxide. Several physical tools in particular; IR, CHN, 1H NMR, 13C NMR for ligand and melting point molar conductance, magnetic moment. and determination the percentage of the metal in the complexes by fl
... Show More