This work provides an analysis of the thermal flow and behavior of the (load-free) refrigerator compartment. The main goal was to compare the thermal behavior inside the refrigerator cavity to the freezer door (home refrigerator) effect and install a fan on the freezer door while neglecting the heat transmitted by thermal radiation. Moreover, the velocity distribution, temperature, and velocity path lines are theoretically studied. This was observed without affecting the shelves inside the cabinet and the egg and butter places on the refrigerator door as they were removed and the aluminum door replaced with a glass door. This study aims to expand our knowledge about the temperature and flow fields of this refrigerator model. Finally, the development of this work highlights the importance of numerical simulation in the search for improvements in the design of this refrigerator model, which may assist refrigerator manufacturers.
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreObjective(s): To assess Baghdad University students’ knowledge and attitudes toward HIV/AIDS, and to find out
the relationship of Baghdad University students’ knowledge and attitudes with certain variables (gender,
socioeconomic status, field of study).
Methodology: A descriptive analytic study was used to assess the knowledge and attitudes of Baghdad University
Students’ toward HIV/AIDS. The study was conducted (November 1st 2012 to July 15th 2013). A non-probability
(purposive sample) of 400 students (males-138 and females-262) were selected from four colleges and they were
in the fourth class, a probability (stratified random) method was used to select four colleges at University of
Baghdad as a study settin
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MoreThe Small Indian Mongoose