A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different; the power density was 24.2 mW/m2, the desalination rate was 86.11 ppm/hr, and the COD removal percentage was 91.38%. The biocathode MDC results were 19.91 mW/m2 as the power density, 88.9 ppm/hr as the desalination rate, and 96.94% as the COD removal percentage. The most efficient type of MDC in this study in power production was the chemical cathode MDC, but it is the lowest sustainable. On the other hand, the biocathode MDC was the best in desalination process performance, and both the air cathode and biocathode MDC are more sustainable and environmentally friendly, especially the biocathode MDC.
In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, ortho
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MorePseudomonas aeruginosa has been identified as the main causative agent responsible for severe infections in burn patients worldwide. This study aimed to investigate the prevalence of the exoU/exoS genotype in P. aeruginosa isolates collected from burn wound infections in Iraq. From January to April 2023, a total of eighty isolates of P. aeruginosawere obtained from patients with burn wound infections in two Iraqi hospitals (Teaching Baghdad Hospital and AL-Yarmok Hospital).The isolates were first identified using biochemical tests and then verified using molecular techniques, specifically by targeting the 16S rRNA gene with specific primers. The exoU/exoS genotype was detected using conventional polymerase chain reaction (PCR) by specifical
... Show MoreABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel
... Show MoreIn this research, salbutamol sulphate (SAS) has been determined by a simple, rapid and sensitive spectrophotometric method. Salbutamol sulphate in this method is based on the coupling of SAS with diazotized ρ- bromoaniline reagent in alkaline medium of Triton X-100 (Tx) to form an orange azo dye which is stable and water-soluble. The azo dye is exhibiting maximum absorption at 441 nm. A 10 - 800 µg of SAS is obeyed of Beer's law in a final volume of 20 ml, i.e., 0.5- 40 ppm with ε, the molar absorptivity of 48558 L.mol-1.cm-1 and Sandell's sensitivity index of 0.01188 µg.cm-2. This new method does not need solvent extraction or temperature control which is well applied to determine SAS in d
... Show MoreBuckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g
... Show Morein this paper, we study and investigate a simple donor-acceptor model for charge transfer formation using a quantum transition theory. The transfer parameters which enhanced the charge transfer and the rate of the charge transfer have been calculated. Then, we study the net charge transfer through interface of Cu/F8 contact devices and evaluate all transfer coefficients. The charge transfer rate of transfer processes is found to be dominated in the low orientation free energy and increased a little in decreased potential at interface comparison to the high potential at interface. The increased transition energy results in increasing the orientation of Cu to F8. The transfer in the system was more active when the system has large driving for
... Show MoreAnastatica Hierochuntica L. Used As an Alternative of Conjugated Estrogen (Premarin) in Rabbit Females