Pushover analysis is an efficient method for the seismic evaluation of buildings under severe earthquakes. This paper aims to develop and verify the pushover analysis methodology for reinforced concrete frames. This technique depends on a nonlinear representation of the structure by using SAP2000 software. The properties of plastic hinges will be defined by generating the moment-curvature analysis for all the frame sections (beams and columns). The verification of the technique above was compared with the previous study for two-dimensional frames (4-and 7-story frames). The former study leaned on automatic identification of positive and negative moments, where the concrete sections and steel reinforcement quantities the source of these moments. The comparison of the results between the two methodologies was carried out in terms of capacity curves. The results of the conducted comparison highlighted essential points. It was included the potential differences between default and user-defined hinge properties in modeling. The effect of the plastic hinge length and the transverse of shear reinforcement on the capacity curves was also observed. Accordingly, it can be considered that the current methodology in this paper more logistic in the representation of two and three-dimensional structures.
Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreAbstract
Although the subject of biofuels industry is linked directly to the energy sector, but has links and numerous indirect effects, in particular effects on the environment and agriculture, this study (opportunities and challenges of biofuels industry and impact on the development of the agricultural sector in developing countries) a modest step to identify the industry in detail and identify the types of products and raw materials entering, then define or limit the positive and negative impacts of this industry in General and for specific products In particular, detailed, and then flip all those effects on the agricultural sector in developing countries can benef
... Show MoreSeveral correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreAbstract:
The aim of the current study was to investigate the possible protective effect of graded doses (5, 10, and 15mg/kg) of pyridoxine hydrochloride intraperitoneally injected against (15mg/kg) doxorubicin-induced cardiotoxicity in female rats. Fifty-six (56) Wistar albino female rats were utilized weighing 180-200 gm allocated into eight groups, seven rats each; Group I: negative control distilled water; Group II: Pyridoxine (5mg/kg); Group III: Pyridoxine (10mg/kg); Group IV: Pyridoxine (15mg/kg); Group V: doxorubicin (15 mg/kg); Group VI: Pyridoxine (5 mg/kg) prior to
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreGenerally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the
... Show MoreThe traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show MoreThe aim of the research is to find out the availability of the requirements of applying the indicators of school performance system in the public schools in Mahayel Asir educational directorate through the school planning indicator, the safety and security indicator, the active learning indicator, the student guidance indicator and determining the existence of statistically significant differences between the responses of the research community according to the variable of (scientific qualification - years of work as a principal - training courses). The questionnaire was used as a tool for data collection from the research community, which consists of all the public schools’ principals (n=180) Mahayel Asir educational directorate
... Show More