In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity permeability reflective index , and impedance were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.
<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreThe study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved. 2010 AMS Classification: 06F35, 03G25, 08A72.
Number theorists believe that primes play a central role in Number theory and that solving problems related to primes could lead to the resolution of many other unsolved conjectures, including the prime k-tuples conjecture. This paper aims to demonstrate the existence of this conjecture for admissible k-tuples in a positive proportion. The authors achieved this by refining the methods of “Goldston, Pintz and Yildirim” and “James Maynard” for studying bounded gaps between primes and prime k-tuples. These refinements enabled to overcome the previous limitations and restrictions and to show that for a positive proportion of admissible k-tuples, there is the existence of the prime k-tuples conjecture holding for each “k”. The sig
... Show More