In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity permeability reflective index , and impedance were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.
One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreReal Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig
Real Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig
E-learning applications according to the levels of enlightenment (STEM Literacy) for physics teachers in the secondary stage. The sample consists of (400) teachers, at a rate of (200) males (50%), and (200)females (50%), distributed over (6) directorates of education in Baghdad governorate on both sides of Rusafa and Karkh. To verify the research goals, the researcher built a scale of e-learning applications according to the levels of STEM Literacy, which consists of (50) items distributed over (5) levels. The face validity of the scale and its stability were verified by extracting the stability coefficient through the internal consistency method “Alf-Cronbach”. The following statistical means were used: Pearson correlation coefficient,
... Show MoreRefractive indices (nD), viscosities (η) and densities (r) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes(Vm E). The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, Vm E and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, Vm E and ∆nD values were negative at 298.15K. Effect of carbon atoms
... Show MoreRefractive indices (nD), viscosities (η) and densities (ρ) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes (VmE) The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, VmE and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, VmE and ∆nD values were negative at 298.15K. Effect of carbo
... Show MoreExcess molar volumes of five ternary mixtures of 2- methoxy ethanol(1) +butyl acetate(2)+benzene(3), +toluene(3), +chlorobenzene(3), +bromobenzene(3), and +nitrobenzene(3) have been measured at 303.15K. The excess molar volume exhibited positive deviation over the entire range of composition in the systems 2-methoxy ethanol(1)+ butyl acetate(2)+ benzene(3),+toluene(3) and sigmoid behavior in the case of the remaining systems. Flory's statistical theory have been extended to predict the excess molar volumes of the five ternary mixtures at 303.15 k over a wide range of composition . An excellent agreement has been found between the experimental and theoretical excess molar volumes , both in magnitude and sign .