In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity permeability reflective index , and impedance were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.
Todays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclus
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreObjective. Glass-ionomer and resin-modified glass-ionomer cements are versatile materials with the ability to form a direct bond with tooth tissues. The aim of this study was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) based on resin-modified glass-ionomer cements via the inclusion of an organophosphorus monomer, ethylene glycol methacrylate phosphate, with a potential to improve the mechanical properties and also function as a reparative restorative material. Methods. pRMGIC was formulated with modification of the resin phase by forming mixes of ethylene glycol methacrylate phosphate (EGMP; 0–40%wt) and 2-hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC Corp.).
... Show MoreAbstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show MoreThis studies p- CuO / n - Si hete-rojunction was deposited by high vacuum thermal evaporation of Copper subjected to thermal oxidation at 300 oC on silicon. Surface morphology properties of The optical properties concerning the transmission spectra were studies for prepared thin films. this structure have been studied. XRD anaylsis discover that the peak at (𝟏𝟏𝟏-) and (111) plane are take over for the crystal quality of the CuO films. The band gap of CuO films is found to be 1.54 eV. The average grain size of is measured from AFM analysis is around 14.70 nm. The responsivity photodetector after deposited CuO appear increasing in response
the research goal is preparing a list of standard criteria and quality controls for information technology applications to serve the Holy Quran.
To achieve this goal, the researcher has built a list of criteria according to the following steps:
First - identify the key areas covered by the whole list which are:
1 – Standards of system building and implementing with the operating screens.
2 – Standards of display forms including audio and video presentation.
3 – Standards which are related to the program philosophy.
4 - Standards which are related to the program objectives.
... Show MoreIt is shown that pure and 3% boron doped a-Si0.1Ge0.9:H and a-Si0.1Ge0.9:N thin films
could be prepared by flash evaporation processes. The hydrogenation and nitrogenation
are very successful in situ after depositing the films. The FT-IR analysis gave all the
known absorbing bonds of hydrogen and nitrogen with Si and Ge.
Our data showed a considerable effect of annealing temperature on the structural and
optical properties of the prepared films. The optical energy gap (Eopt.) of a-Si0.1Ge0.9
samples showed to have significant increase with annealing temperature (Ta) also the
refractive index and the real part of dielectric constant increases with Ta, however the
extinction coefficient and imaginary part of dielect
"1998 onwards, a span reporting 1000s of studies depicts the ever-increasing Schiff bases and their complexes applicability; this study genetically tests the research of the last 20 years. The variety of these molecules structural has made them obtainable for a so broad ambit for implementations of biological. They are eminent and because of this unique feature they find their position in the quantitative and qualitative calculation of metals in the aqueous medium. It demonstrated to be prominent catalysts and showed an enjoyable effect of fluorescence. Definitively, Schiff base fissures gotten situation of a unique during bio-experiments and in vitro to develop drugs with a large number of biological structures containing parasites
... Show MoreBACKGROUND: Three-dimensional (3D) printing is an evolving technology that has been used recently in a wide spectrum of applications. AIM: The objective is to evaluate the application of 3D printing in various neurosurgical practice. PATIENTS AND METHODS: This pilot study was conducted in the neurosurgical hospital in Baghdad/Iraq between July 2018 and July 2019. An X, Y, and Z printer was used. The working team included neurosurgeons, biomedical engineers, and bio-technicians. The procedure starts with obtaining Magnetic resonance imaging (MRI) or computed tomography (CT) scan in particular protocols. The MRI, and CT or angiography images were imported into a 3D programmer for DICOM images called 3D slice where these files con
... Show More