Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely sandy loam and clay loam, with three types of plants; (corn, tomato, and sweet sorghum). The soil wetting pattern was analyzed each half an hour for three hours of irrigation time and three initial soil moisture content. Equations for wetted radius and wetted depth were predicted and evaluated by utilizing the statistical parameters for the different hydraulic soil models (Model Efficiency (EF) and Root Mean Squares Error (RMSE)). The values RMSE does not exceed 0.40 cm, and EF is greater than 0.96 for all types of soil. These values were between the values obtained from program HYDRUS-2D and the values obtained from formulas. This shows that evolved formula can be utilized to describe the soil wetting pattern from the surface drip irrigation system. The relative error for the different hydraulic soil models was calculated and compared with Brooks and Corey's model, 1964. There was good agreement compared with different models. RMSE was 0.23 cm, while the relative error -1% and 1 for EF for wetted radius.
Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreUnsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show Morerop simulation models play a pivotal role in evaluating irrigation management strategies to improve water use in agriculture. The aim of this study is to verify the validity of the Aquacrop model of maize under the surface and sprinkler irrigation systems, and a cultivation system, borders and furrows, and for two varieties of Maze (Fajr and Drakma) At two different sites in Iraq, Babylon and Al-Qadisiyah governorates. An experiment was conducted to evaluate the performance of the Aquacrop model in simulating canopy cover (CC), biomass (B), dry yield, harvest index (HI), and water productivity (WP). The results of RMSE, R2, MAE, d, NSE, CC, Pe indicated good results and high compatibility between measured and simulated values. The highest a
... Show MoreIn current study a computation fluid dynamic (CFD) technique was used to investigate the effect of groynes shape and spacing on the scour pattern and the maximum scour depth in open channel flow. CFD model have been validated throughout comparing the numerical results with three previous experimental studies for a single groyne located in open channel with three different shapes (L, quadrant, and parabola shapes). The comparison revealed very good agreement between numerical results of the maximum scour depth with the results of all experimental models. Moreover, investigations of the effect of multi-groynes (three groynes and four groynes) arranged in parallel with constant spacing and also with variable spacing have been done, the
... Show MoreBackground: Proper cleaning and shaping of the whole root canal space have been recognized as a real challenge, particularly in oval-shaped canals.This in vitro study was conducted to evaluate and compare the efficiency of different instrumentation systems in removing of dentin debris at three thirds of oval-shaped root canals and to compare the percentage of remaining dentin debris among the three thirds for each instrumentation system. Materials and methods: Fifty freshly extracted human mandibular molars with single straight oval-shaped distal root canals were randomly divided into five groups of ten teeth each. Group One: instrumentation with ProTaper Universal hand instruments, Group Two: instrumentation with ProTaper Universal rotary
... Show MoreSheet piles are necessary with hydraulic structures as seepage cut-off to reduce the seepage. In this research, the computational work methodology was followed by building a numerical model using Geo-Studio program to check the efficiency of using concrete sheet piles as a cut-off or reducer for seepage with time if the sheet piles facing the drawdown technique. Al-Kifil regulator was chosen as a case study, an accurate model was built with a help of observed reading of the measuring devices, which was satisfactory and helped in checking the sheet piles efficiency. Through the study, three scenarios were adopted (with and without) drawdown technique, it was found that at the short time there's no effect of the drawdown technique on
... Show MoreProblem of water scarcity is becoming common in many parts of the world. Thus to overcome this problem proper management of water and an efficient irrigation systems are needed. Irrigation with buried vertical ceramic pipe is known as a very effective in management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the software HYDRUS/2D to predict empirical formulas that describe the predicted results accurately. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation a
... Show MorePrecision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by us
... Show MoreA submerged weir is a hydraulic structure utilized to control flow in canals and rivers. Water scarcity is a persistent issue in Iraq, especially during the dry season when irrigation withdrawals reduce downstream water levels in canals (Water is lost from irrigation canals due to seepage, evaporation, and vegetation growth). The final section of the Bani Hassan Canal experiences significant drops in water surface (WS) levels, negatively impacting irrigation efficiency. This study addresses that gap by investigating the use of submerged weirs to enhance water distribution and raise WS in the final 6 km segment of the canal. A one-dimensional (1D) hydraulic mode