Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely sandy loam and clay loam, with three types of plants; (corn, tomato, and sweet sorghum). The soil wetting pattern was analyzed each half an hour for three hours of irrigation time and three initial soil moisture content. Equations for wetted radius and wetted depth were predicted and evaluated by utilizing the statistical parameters for the different hydraulic soil models (Model Efficiency (EF) and Root Mean Squares Error (RMSE)). The values RMSE does not exceed 0.40 cm, and EF is greater than 0.96 for all types of soil. These values were between the values obtained from program HYDRUS-2D and the values obtained from formulas. This shows that evolved formula can be utilized to describe the soil wetting pattern from the surface drip irrigation system. The relative error for the different hydraulic soil models was calculated and compared with Brooks and Corey's model, 1964. There was good agreement compared with different models. RMSE was 0.23 cm, while the relative error -1% and 1 for EF for wetted radius.
The laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.
In this work, a numerical study is performed to predict the solution of two – dimensional, steady and laminar mixed convection flow over a square cylinder placed symmetrically in a vertical parallel plate. A finite difference method is employed to solve the governing differential equations, continuity, momentum, and energy equation balances. The solution is obtained for stream function, vorticity and temperature as dependent variables by iterative technique known as successive over relaxation. The flow and temperature patterns are obtained for Reynolds number and Grashof number at (Re= -50,50,100,-100) (positive or negative value refers to aidding or opposing buoyancy , +1 assisting flow, -1 opposing flow) and (102 to 105) , respective
... Show MoreIn this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem
... Show MoreAccuracy in multiple objects segmentation using geometric deformable models sometimes is not achieved for reasons relating to a number of parameters. In this research, we will study the effect of changing the parameters values on the work of the geometric deformable model and define their efficient values, as well as finding out the relations that link these parameters with each other, by depending on different case studies including multiple objects different in spacing, colors, and illumination. For specific ranges of parameters values the segmentation results are found good, where the success of the work of geometric deformable models has been limited within certain limits to the values of these parameters.
ABSTRACT Background:- White spot lesions are common esthetic problem that compromise the success of orthodontic treatment. This study aimed to assess white spot lesions in patients with fixed orthodontic appliance at different time intervals. Materials & Methods:- Thirty two patients (24 females and 8 males) were included in this study and they underwent clinical examination for white spot lesions using enamel decalcification index at four time intervals: (2-3 weeks after appliance insertion, 2, 4 and 6 months). Results:- The patients were free of white spot lesions at the appliance insertion visit. The mean of white spot lesions was 2.22 which were increased significantly during six months to reach 24.59 at the end of study. There was a si
... Show MoreQuantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
Background: This study was performed to compare the marginal fit changes and facture resistance of metal ceramic crowns constructed from Ceramill Sintron metal coping veneered with three different porcelain veneering materials (Vita Master Koromikos VMK, Willi Geller Creation CC and GC initial MC), also to evaluate the influence of thermocycling on load at fracture. Materials and Methods: Master brass die was scanned ,then metal coping was designed and milled from Ceramill Sintron blank to get 60 metal copings, then divided randomly into three groups(20 sample), then veneered with porcelain: VITA, Creation or GC. The marginal gaps were measured before and after porcelain veneering then marginal fit changes was calculated. Fracture resist
... Show MoreFilms of pure Poly (methyl methacrylate) (PMMA) doped by potassium iodide (KI) salt with percentages (1%) at different thickness prepared by casting method at room temperature. In order to study the effect of increasing thickness on optical properties, transmission and absorption spectra have been record for five different thicknesses(80,140,210,250,320)µm. The study has been extended to include the changes in the band gap energies, refractive index, extinction coefficient and absorption coefficient with thickness.