A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video streaming, it may also cause a video bitrate oscillation. So the video buffer structure is adjusted by adding two thresholds as operating points for overflow and underflow states to filter the impact of throughput fluctuation on video buffer occupancy level. Then a bandwidth prediction algorithm is proposed for enhancing the performance of video bitrate adaptation. This algorithm's work depends on the current video buffer level, video bitrate of the previous segment, and iterative throughput measurements to predict the best video bitrate for the next segment. Simulation results show that reserving a bandwidth margin is better in adapting the video bitrate under bandwidth variation and then reducing the risk of video playback freezing. Simulation results proved that the playback freezing happens two times: firstly, when there is no bandwidth margin used and secondly, when the bandwidth margin is high while smooth video bitrate is obtained with moderate value. The proposed scheme is compared with other two schemes such as smoothed throughput rate (STR) and Buffer Based Rate (BBR) in terms of prediction error, QoE preferences, buffer size, and startup delay time, then the proposed scheme outperforms these schemes in attaining smooth video bitrates and continuous video playback.
Density functional theory calculations are employed to investigate the impact of edifenphos molecule on the reactivity and electronic sensitivity of pure calcium oxide (CaO) nanocluster. The strong adsorption of edifenphos molecule on CaO nanocluster occurs by the sulfur head of the adsorbate, and the amount of the energy of this adsorption is around − 84.40 kcal/mol. The adsorption of edifenphos molecules results in a decrease in the values of Eg of CaO from 4.67 to 3.56 eV, as well as an increase in the electrical conductance. Moreover, the work function of CaO nanocluster is significantly affected, which changes the current of the field emission electron. Eventually, the recovery time is calculated around 99 ms at ambient temperature f
... Show MoreThis work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show MoreA perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca
... Show MoreNatural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show More