Preferred Language
Articles
/
joe-1304
A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming
...Show More Authors

A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video streaming, it may also cause a video bitrate oscillation. So the video buffer structure is adjusted by adding two thresholds as operating points for overflow and underflow states to filter the impact of throughput fluctuation on video buffer occupancy level. Then a bandwidth prediction algorithm is proposed for enhancing the performance of video bitrate adaptation. This algorithm's work depends on the current video buffer level, video bitrate of the previous segment, and iterative throughput measurements to predict the best video bitrate for the next segment. Simulation results show that reserving a bandwidth margin is better in adapting the video bitrate under bandwidth variation and then reducing the risk of video playback freezing. Simulation results proved that the playback freezing happens two times: firstly, when there is no bandwidth margin used and secondly, when the bandwidth margin is high while smooth video bitrate is obtained with moderate value. The proposed scheme is compared with other two schemes such as smoothed throughput rate (STR) and Buffer Based Rate (BBR) in terms of prediction error, QoE preferences, buffer size, and startup delay time, then the proposed scheme outperforms these schemes in attaining smooth video bitrates and continuous video playback.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Applied Thermal Engineering
Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration
...Show More Authors

View Publication
Scopus (67)
Crossref (60)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 04 2024
Journal Name
Journal Of Electrical Systems
AI-Driven Prediction of Average Per Capita GDP: Exploring Linear and Nonlinear Statistical Techniques
...Show More Authors

Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi

... Show More
View Publication
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Sun Jun 23 2024
Journal Name
Asee Annual Conference And Exposition
Undergraduate Research Impact on Students' Retention and Academic Development Based on Their Study Field and the Mentoring Approach
...Show More Authors

The impact of undergraduate research experiences on students' academic development and retention in STEM fields is significant. Students' success in STEM fields is based on developing strong research and critical thinking skills that make it essential for students to engage in research activities throughout their academic programs. This work evaluates the effectiveness of undergraduate research experiences with respect to its influence on student retention and academic development. The cases presented are based on years of experience implementing undergraduate research programs in various STEM fields at Colorado State University Pueblo (CSU Pueblo) funded by HSI STEM Grants. The study seeks to establish a correlation between students' reten

... Show More
Scopus
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Field study of the effect of jet grouting parameters on strength based on tensile and unconfined compressive strength
...Show More Authors
Abstract<p>The improvement of the mechanical soil characteristics of jet grouting technique is very attractive. The jet grouted soil cement columns in soft is a complicated issue because it depends on a number of factors such as, soil nature, mixture, influence among soil and grouting materials, jetting force of nozzle, jet grouting and water flow rate, rotation and lifting speed. This paper discusses the estimation of shear strength parameters of soil-cement column (soilcrete) in soft clayey soil based on the relationships between the unconfined compressive and split tensile strength for the soilcrete and the effect of the jet grouting and water pressure in the values of cohesion and internal f</p> ... Show More
View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref