A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video streaming, it may also cause a video bitrate oscillation. So the video buffer structure is adjusted by adding two thresholds as operating points for overflow and underflow states to filter the impact of throughput fluctuation on video buffer occupancy level. Then a bandwidth prediction algorithm is proposed for enhancing the performance of video bitrate adaptation. This algorithm's work depends on the current video buffer level, video bitrate of the previous segment, and iterative throughput measurements to predict the best video bitrate for the next segment. Simulation results show that reserving a bandwidth margin is better in adapting the video bitrate under bandwidth variation and then reducing the risk of video playback freezing. Simulation results proved that the playback freezing happens two times: firstly, when there is no bandwidth margin used and secondly, when the bandwidth margin is high while smooth video bitrate is obtained with moderate value. The proposed scheme is compared with other two schemes such as smoothed throughput rate (STR) and Buffer Based Rate (BBR) in terms of prediction error, QoE preferences, buffer size, and startup delay time, then the proposed scheme outperforms these schemes in attaining smooth video bitrates and continuous video playback.
In this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreIn this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThis paper investigates the capacitated vehicle routing problem (CVRP) as it is one of the numerous issues that have no impeccable solutions yet. Numerous scientists in the recent couple of decades have set up various explores and utilized numerous strategies with various methods to deal with it. However, for all researches, finding the least cost is exceptionally complicated. In any case, they have figured out how to think of rough solutions that vary in efficiencies relying upon the search space. Furthermore, tabu search (TS) is utilized to resolve this issue as it is fit for solving numerous complicated issues. The algorithm has been adjusted to resolve the exploration issue, where its methodology is not quite the same as the normal a
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreThe most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.
The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show More