
The optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the
... Show MoreParticulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in
In this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreThis paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
A field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreIn this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.
A step to net-zero of carbon dioxide losses in the microalgae cultivation process was targeted in the current study. This research was carried out by using pre-dissolved inorganic carbon (DIC) as a source of carbon with two doses of twenty-five and fifty millilitres.
The Electrical power system has become vast and more complex, so it is subjected to sudden changes in load levels. Stability is an important concept which determines the stable operation of the power system. Transient stability analysis has become one of the significant studies in the power system to ensure the system stability to withstand a considerable disturbance. The effect of temporary occurrence can lead to malfunction of electronic control equipment. The application of flexible AC transmission systems (FACTS) devices in the transmission system have introduced several changes in the power system. These changes have a significant impact on the power system protection, due to differences inline impedance, line curre
... Show More