Preferred Language
Articles
/
joe-1296
Shaft Resistance of Long (Flexible) Piles Considering Strength Degradation
...Show More Authors

Soil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soil's tendency to contract or dilate under shearing conditions. To investigate this tendency, three piles with different surface roughness and under different confining pressures are used. A dilation behavior is observed in the relation of the average shaft resistance with the axial displacement for piles with rough and medium roughness surfaces, while contraction behavior is noticed when shearing piles with smooth surfaces. A large shear strength degradation of about (10%) reduction in the shaft resistance is observed under low confining pressure compared to a lesser reduction value of about (2%) under high confining pressure. Good agreement is obtained between the experimental and the numerical results.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Die Design of Flexible Multi-Point Forming Process
...Show More Authors

Multi-point forming (MPF) is an advanced flexible manufacture technology, and the technology results from the idea that the whole die is separated into small punches that can be adjusted height. This idea is applied to the traditional rigid blank-holder, so flexible blank-holder (FBH) idea can be obtained. In this work, the performance of a multi-point die is investigated with pins in square matrix and suitable blank holder. Each pin in the punch holder can be a significant moved according to the die high and at different load that applied with spring with respect to spring stiffness. The results shows the reduction in setting time with respect to traditional single point incremental forming process that lead to (90%). and also show duri

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Dec 03 2021
Journal Name
Rawal Medical Journal
Functional outcome of interlocked intramedullary nailing fixation in management of closed tibia shaft fractures
...Show More Authors

Objective: To assess prospectively functional outcome of interlocked intramedullary nailing fixation in management of closed tibia shaft fractures. Methodology: This prospective study included 134 patients with closed shaft tibia fractures with age 18-60 years and isolated closed fracture of shaft of tibia. The fractures were fixed by interlocking intramedullary nail. At follow-up after 12 months postoperatively, the functional outcome was assessed radiographically for the sign of union and clinically according to Klemm-Borner criteria. Results: The mean age was 38.55 years. Out of 134 patients, 55.2% were male. The cause was road traffic accident in 44.8%, majority of the fracture occur in the mid-shaft (41.8%), and oblique fracture was th

... Show More
Preview PDF
Scopus (2)
Scopus
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
Degradation of Indigo Dye Using Quantum Mechanical Calculations
...Show More Authors

The semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11.  The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
An Analysis of Stress Distribution in a Spline Shaft Subjected to Cycilc Impulsive Load
...Show More Authors

In this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of Polymers on Permanent Deformation of Flexible Pavement
...Show More Authors

The permanent deformation of flexible pavement represent serious problem in hot climate region. Numerous efforts are devoted to mitigate this distress such as modifying asphalt binder by polymers. The present study demonstrate the effect of utilizing four types of polymers to reduce the permanent deformation, these polymers are Polyethylene Wax (PEW), Styrene Butadiene Rubber (SBR), Ethylene Propylene Dien Monomer (EPDM) and Ethylene Vinyl Acetate (EVA). The prepared mixtures composed of 4.9 % of 40/50 asphalt binder, 12.5 mm nominal aggregate maximum size and limestone dust as filler. The permanent and resilient strains have been recorded when the cylindrical specimens, 101.6 mm in diameter and 203.2 mm in height, tested by repeated loa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Diyala Journal Of Engineering Sciences
NFLUENCE OF WATER SOURCE ON COMPRESSIVE STRENGTH OF HIGH STRENGTH CONCRETE
...Show More Authors

This research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using

... Show More
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
The Influence of Base Layer Thickness in Flexible Pavements
...Show More Authors

Flexible pavement design and analysis were carried out in the past with semi-experimental methods, using elastic characteristics of pavement layers. Due to the complex interferences between various layers and their time consumption, the traditional pavement analysis, and design methods were replaced with fast and powerful methods including the Finite Element Method (FEM) and the Discrete Element Method (DEM). FEM requires less computational power and is more appropriate for continuous environments. In this study, flexible pavement consisting of 5 layers (surface, binder, base, subbase, and subgrade) had been analyzed using FEM. The ABAQUS (6.14-2) software had been utilized to investigate the influence of the base layer depth on ver

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Thermo-hydrodynamic Analysis of Misaligned Journal Bearing Considering Surface Roughness and Non-Newtonian Effects
...Show More Authors

This paper presents a numerical simulation for the combined effect of surface roughness and non-Newtonian behavior of the lubricant on the performance of misaligned journal bearing. The modified Reynolds equation to include the effect of non-Newtonian lubricant and bearing surface roughness has been formulated. The model accounts for the lubricant viscosity dependence on temperature and shear rate. In order to make a complete thermo-hydrodynamic analysis (THD) of rough surface misaligned journal bearing lubricated with non-Newtonian lubricant, the modified Reynolds equation coupled with the energy, heat conduction equations, the equation related the viscosity and temperature with appropriate boundary conditions have been solved simultane

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Force degradation of orthodontic elastomeric chains: A literature review
...Show More Authors

Background: Elastomeric chains are used to generate force in many orthodontic procedures, but this force decays over time, which could affect tooth movement. This study aimed to study the force degradation of elastomeric chains. Data and Sources: An electronic search on Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, LILACS, and PubMed was made, only articles written in English were included, up to January 2022.Study selection: Fifty original articles, systematic reviews, and RCTs were selected. Conclusion: Tooth movement, salivary enzymes, alcohol-containing mouthwash, whitening mouthwash, and alkaline and strong acidic (pH <5.4) solutions all have a significant impact on elastomeric chain force degradation. The fo

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
A Study of compression strength and flexural strength for Polymer Concrete
...Show More Authors

Polymer concrete were prepared by mixing epoxy resin with sand particles in three different grain size (150-300) , (300-600 ) and (600- 1200) μm respectively. The percentage of epoxy was 15%, 20 %, 25% and 30% wt of the total weight. Compression strength and flexural strength tests were carried out for the prepared samples.
The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes. These percentages were adopted to fill the voids between particles sand have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin.

View Publication Preview PDF