Preferred Language
Articles
/
joe-1296
Shaft Resistance of Long (Flexible) Piles Considering Strength Degradation
...Show More Authors

Soil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soil's tendency to contract or dilate under shearing conditions. To investigate this tendency, three piles with different surface roughness and under different confining pressures are used. A dilation behavior is observed in the relation of the average shaft resistance with the axial displacement for piles with rough and medium roughness surfaces, while contraction behavior is noticed when shearing piles with smooth surfaces. A large shear strength degradation of about (10%) reduction in the shaft resistance is observed under low confining pressure compared to a lesser reduction value of about (2%) under high confining pressure. Good agreement is obtained between the experimental and the numerical results.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Load-settlement Behavior of Steel Piles in Different Sandy Soil Configurations
...Show More Authors

In the case where a shallow foundation does not satisfy with design requirements alone, the addition of a pile may be suitable to improve the performance of the foundation design. The lack of in-situ data and the complexity of the issues caused by lagging in the research area of pile foundations are notable. In this study, different types of piles were used under the same geometric conditions to determine the load-settlement relationships with various sandy soil relative densities. The ultimate pile capacity for each selected pile is obtained from a modified California Bearing Ratio (CBR) machine to be suitable for axial pile loading. Based on the results, the values of Qu for close-ended square pile were increased by 15

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Modeling of Monocrystalline PV Cell Considering Ambient Conditions in Baghdad City
...Show More Authors

Abstract

 

The environmental conditions are important factors, because they affect both the efficiency of a photovoltaic module and the energy load. This research was carried out experimentally and modeling was done in MATLAB –Simulink by monitoring the variation in power output of the system with environmental conditions such as solar radiation, ambient temperature, wind speed, and humidity of Baghdad city. From the results, the ambient temperatures are inversely proportional to humidity and the output power performance of the system, while the wind speed is directly proportional with the output power performance of the system.  

 

Keywords:

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Experimental Investigating of Unsupported Excavation Considering Its Effect on a Nearby Axially Loaded Pile
...Show More Authors

An experimental model is used to simulate the loss of soil lateral confinement due to excavation nearby an individual axially loaded pile. The effects of various parameters, such as the horizontal distance of excavation, depth of excavation and pile slenderness ratios are investigated. The experimental analysis results showed the effect of excavation is more remarkable as the horizontal distance of excavation becomes closer to the pile than half pile length. The effect of excavation diminishes gradually as the horizontal distance increases beyond that distance for all the investigated pile slenderness ratios and depths of excavation. The pile head deflection, settlement and bending moments along pile increase with decreasing horizontal d

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
E3s
Performance of Under-Reamed Piles in Collapsible Soil
...Show More Authors

One of the Iraqi geotechnical problems is the presence of gypseous soils covering about (27-36) percentage of Iraq soils containing gypsum between (10-70) ratios. The main reason for soil problematic is the gypsum dissolution when these soils are inundated. However, the soluble gypsum can be leached out of the soil particles, so these problems can be led to cracking, tilting, and collapsing the related soil structure and changing the soil properties. The aim of this work is to investigate the performance of under-reamed piles as a new, improved method to reduce the moisture sensitive and the primary triggering mechanism for the volume reduction of collapsible soil, which is considered as a non-elastic deformation; this was done by c

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re

... Show More
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Experimental study on performance of laterally loaded plumb and battered piles in layered sand
...Show More Authors

       This study introduces a series of single and pile group model tests subjected to lateral loads in . multilayered sand from Karbala, Iraq. The aim of this study is to investigate: the performance of the pile groups subjected to lateral loads; in which the pile batter inclination angle is changed; the effect of pile spacing (s/d) ratio, the influence of using different number of piles and pile group configuration. Results revealed that the performance of single negative (Reverse) Battered piles with inclination of 10° and 20° show a gain of 32% and 76 % in the ultimate lateral capacity over the regular ones. For pile groups, the use of a combination of regular, negative and positive battered piles in

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 02 2012
Journal Name
Karbala Journal Of Medicine
Open Tibial Shaft Fractures Treated By Primary External Fixation And Bone Graft
...Show More Authors

Eprospective study undertaken between January 2007 and January 2011, 58 consecutive cases with compound tibial shaft fractures. All fractures were stabilized by external fixator device AO/ASIF type after failed the manipulation under anesthesia (MUA) to restore the osseous alignment. In 32 patients cancellous bone graft were used from the upper part of the tibia to enhance healing process, all these patients were followed for an average of 8–12 months. Our findings showed that stabilization of the fracture shaft tibia by external fixation with cancellous bone graft had significantly better result, than external fixation alone. We conclude that unilateral, uniplanar external fixation with early bone grafting from upper part of the tibia is

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
Dental Hypotheses
Effect of Surface Treatments with Plasma and Chemical Bond on Shear Bond Strength of Acrylic Denture Teeth to Flexible and Heat-Cured Denture Base Material: An In Vitro Study
...Show More Authors

Introduction: We aimed to evaluate the shear bond strength of acrylic denture teeth to flexible and heat-cured denture base material after surface treatments with argon plasma, chemical bonding agent (PALFIQUE universal), and combination. Methods: A total of 80 incisor acrylic denture teeth were treated with a argonplasma, chemical bond (PALFIQUE universal bond), and a combination with 10 samples for each group. The neck (gingival portion) of teeth was cut at a 45° angle, and the teeth were attached to heat-cured acrylic resin and flexible denture base material. All the specimens were stored in artificial saliva for 7 days in an incubator (37 °C). A shear

... Show More
View Publication
Scopus Clarivate Crossref