Preferred Language
Articles
/
joe-1285
Assessing the Marshall Properties of Porous Asphalt Concrete
...Show More Authors

Porous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff.  The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping accidents, reduced splashing, and spraying pedestrians and drivers.

In this study, the porous mixture's volumetric and physical properties were tested, and the use of carbon fibers as a type of mixture improver. The results were compared after performing the following steps: Selecting the best gradient for the porous asphalt mixture by selecting the largest proportion of air voids from three gradations group according to specifications (ASTM 7064), then choosing the optimum asphalt ratio according to the standard specifications, which are the value of drain down % and the Cantabro abrasion loss % value, as well as the ratio of air voids. After obtaining the optimum asphalt ratio, samples of the asphalt mixture were prepared. Carbon fibers were added to it at a rate of (0.3%) by weight of the total mix and a length of (2 cm) and prepared samples without additives. They were tested by a Marshall device to calculate the stability and flow value and show the effects of fibers on porous asphalt concrete properties. An increase in the stability value and a decrease in the flow and reduction in the drain down rate during exposure to high temperature were observed for the samples containing carbon fibers, by 48.8%, 44%, and 72%, respectively

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 27 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of the addition of silanated poly propylene fiber to polymethylmethacrylate denture base material on some of its mechanical properties
...Show More Authors

Background: Poly propylene fibers with and without silane treatment have been used to reinforce heat cure denture base acrylic but, some mechanical properties like transverse strength, impact strength, tensile strength, hardness, wear resistance and wettability. Which are related to the clinical use of the prosthesis are not evaluated yet. The aim of the study is to identify the influence of incorporation of treated and untreated fibers on these properties Materials and methods: Eighty four heat cure acrylic specimens were constructed by conventional flasking technique. They were divided into six groups according to the tests and each group was subdivided into two subgroups control and experimental groups (seven samples for each subgroup

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
The Q-switched Nd:YAG laser shock processing effects on mechanical properties of C86400 Cu-Zn alloy: Q-switched Nd:YAG laser shock processing effects on mechanical properties of C86400 Cu-Zn alloy
...Show More Authors

The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees22fr
Calculating the modes properties for glass optical fibers at He-Ne laser wavelength
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Estimating the PVT Properties for Crude Oil from a Southern Iraqi Oil Field
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Influence of substrate temperature on structural and optical properties of SnO2 films
...Show More Authors

Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Influence of Laser Energy on the Structural and Optical Properties of (CdO):(CoO) Thin Films Produced by Laser-Induced Plasma (LIP)
...Show More Authors

In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Mechanical Properties Of AA 6061-T6 Aluminum Alloy Friction Stir Welds
...Show More Authors

The different parameters  on  mechanical  and  microstructural  properties  of  aluminium  alloy  6061-T6 Friction  stir-welded  (FSW) joints  were investigated in the  present study. Different welded  specimens were produced by employing variable rotating  speeds and welding speeds. Tensile strength of the produced joints  was tested at room  temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and  analyzed by  means of  brinell hardness number . Besides to thess tests the bending properties  investigat

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Study of Spectroscopy and Thermodynamic Properties for Phoshours dioxide PO2 Molecular and Influence Study of Bond ( P-O ) on Spectroscopy Properties
...Show More Authors

In This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 k

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Studia Ubb Chemia,
EXCESS AND DEVIATIONS PROPERTIES FOR THE BINARY SOLVENT MIXTURES OF TETRAHYDROFURFURYL ALCOHOL WITH SOME AROMATIC HYDROCARBONS AT 298.15 K.
...Show More Authors

In this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister

... Show More
View Publication
Publication Date
Sun Jul 27 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluation of the effect of addition of polyester fiber on some mechanical properties of heat cure acrylic resin
...Show More Authors

Background: This study aimed to evaluate the effect addition of polyester fibers on the some mechanical properties of heat cured acrylic resin (implant strength, flexural strength and hardness) Materials and methods: Ninety specimens were used in the study. Thirty specimens were used for impact strength measurements (80mm X 10mm X 4mm) length, width and thickness respectively. The specimens divided into three test groups (n=10), first group formed from heat cure acrylic resin without fiber reinforcement. Second group was formed from heat cure acrylic resin was reinforced with 2 mm length polyester fiber and third group was formed from heat cure acrylic resin reinforced with 4mm length polyester fiber, impact strength measured by impact test

... Show More
View Publication Preview PDF