In this paper, the characteristics of microstrip monopole antennas are studied firstly in free space. Secondly, the effects of the human body on the studied antenna's performance are investigated for wearable communications. Different patch shapes of microstrip monopole antenna are chosen to operate at two bands: industrial scientific and medical band (ISM) and ultra-wideband (UWB) for wearable applications. The studied antenna consists of a radiating element on one side of the substrate and a partial ground plane on the other side. The antenna is supposed to fabricate on cloth fabric whose relative dielectric constant is Ɛr =1.7. At the same time, the pure copper could be used as the conducting part representing both the radiating monopole and the partial ground plane. The software program of Computer Simulation Technology (CST) for Microwave Studio (MWS) is utilized to simulate the studied antennas. The obtained results have illustrated that in the free space, the proposed antennas of slotted hexagonal, rectangular, and circular shapes can operate from 2-12 GHz and of the bandwidth of 10.31 GHz, 10.19 GHz, and 9.67 GHz, respectively. The hexagonal antenna is selected and proposed to investigate the effects of the human body on its performance. The human body is simulated, and its effects on the performance of the proposed antenna are studied. The reflection coefficient, Voltage Standing Wave Ratio (VSWR), gain, and efficiency are found over that frequency range. The simulated results indicate that the human body effects are significant, and the proposed antenna showed to be a good candidate for wearable communications.
The research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
New metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m
... Show MoreNew Schiff base ligand (E)-6-(2-(4-(dimethylamino)benzylideneamino)-2-(4-hydroxyphenyl)acetamido)-3,3- dimethyl-7-oxo-4-thia-1- azabicyclo[3.2.0]heptane-2-carboxylic acid = (HL) was synthesized via condensation of Amoxicillin and 4(dimethylamino)benzaldehyde in methanol. Figure -1 Polydentate mixed ligand complexes were obtained from 1:1:2 molar ratio reactions with metal ions and HL, 2NA on reaction with MCl2 .nH2O salt yields complexes corresponding to the formulas [M(L)(NA)2Cl],where M=Fe(II),Co(II),Ni(II),Cu(II),and Zn(II), A=nicotinamide .
In :the _pr sent _paper we report ths. ynthesis ·of a new li:ga!!d..
[f4LJ [{'2 {1-'[(2-hyd•:0xy-.ben:zy1i.den·e)..,bxcJrazanci}:etby-l }benzerieÂ
J,5 t;rtiol .aad its complexes ·w-ith '('Mlif(1 J Fev 1 ), ed(J'l), and. :f.::I:g 01>-)
The ligand \VS preP..ated rin tWo steps' • fp I t}Je nrst stea -soJutiQil Qf
-saUcyla[deeyeq. ip methatt:oJ . re3ctcd lU1der reflux
... Show More