Investigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the increase in solar radiation. The average rise in PVT water collectors' thermal energy efficiency with a glass cover for three cases was 5% compared with the unglazed PVT water collector. While the maximum total efficiencies of 79 % and 69.5 % for glazed and unglazed collectors were recorded under maximum solar radiation of 1100 W/m2 and maximum water flow rate in the tubes system for July. The recorded result seemed promising and significant, indicating that the manufactured system is useful for adjusting PVT thermal and electrical efficiencies for cold and hot weather conditions.
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
A pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreChronic Kidney Disease (CKD) is a public health problem and many studies support the link between kidney dysfunction and cardiovascular events. Aldosterone has been shown for decades that a plasma aldosterone concentration is elevated in CKD. Whilst, Osteoprotegerin (OPG), after its capacity to protect bone, also osteoprotegerin is elevated in patients with chronic kidney disease (CKD), where it could predict the deterioration of kidney function, cardiovascular, vascular events and all-cause mortality. On the other hand, fibroblast growth factors (FGFs), in patients with CKD, its levels seem to increase progressively as kidney function worsens. The aim of the present study is to assess the correlations between serum osteoprotegerin
... Show MoreQuantum dots (QDs) of zinc sulfide (ZnS) was prepared by chemical reaction with different potential of hydrogen (pH) and used to fabricate organic quantum dot hybrid junction device. The optical properties of QDs were characterized by ultraviolet-visible (UV-Vis.) and photoluminescence (PL) spectrometer. The results show that the prepared QDs were nanocrystalline with defects formation. The energy gap (Eg)calculated from PL were 3.64, 3.53 and 3.35 eV for pH=8, 10 and 12 respectively. This decreasing of energy gaps is results of the effect the pH solution increases, which in turn leads to the shifted of the PL spectrum toward red shifted, which makes the energy bands at surface states are shallow ban
... Show MoreExperimental investigations had been done in this study to demonstrate the effect of natural particles used as a reinforcement material to unsaturated polyester resin. The tensile test and water absorption were investigated according to (ASTM D638) and (ASTM D570), respectively. The influence of sunflower husk and pomegranate husk particles, used as a reinforcement material, on the tensile strength, Young's modulus and water absorption with different weight fraction (3%, 7% and 10%) and particle grain size (50µm, 100 µm and 150 µm), has been investigated. The water absorption of polymer composites was studied by measuring the specimen weight before and after immersion in water for one hundred days. In the experiments of tensile test,
... Show MoreBackground: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface
... Show More