Preferred Language
Articles
/
joe-1277
Design and Simulation of a controller for Double Fed Induction Generator turbine Utilized Solar Up Draft Tower
...Show More Authors

This paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.

According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators that generate the appropriate electrical power required. The proposed controller of the DFIG is based on (vector control) by using PI control to feed the power of the rotor circuit parts. The (DFIG) consists of two back-to-back PWM inverters connected between the stator and the rotor. This paper's main goal is to design and simulate a controller for two (DFIG's) under various operating conditions driven by a wind turbine, which is rotated by the warm wind effect inside the solar updraft tower. This is to generate maximum power with constant magnitude and frequency of the output voltage. The proposed controller's performance is verified by using a simulation model built using the MATLAB/Simulink software. The simulation results confirm that the proposed controller (Vector Control), using PI controller maintains both the magnitude and frequency of the output voltage stays constant at the nominal values and stabilization irrespective of the wind speed variations and extract maximum output power. In addition, the controller provides (MPPT) to the turbine to generate the maximum power according to the available wind speed. The torque will give the rotor quadrature current (Iqr), which causes speed change according to the working conditions. The results also showed the steady-state and discussed the two different methods (Vector Control, MPPT) of the control strategy (DFIG). MATLAB and Simulink software used for modeling one of DFIG's modules to supply the hospital load of 276 KW. Besides, simulation results show that the controller demonstrates significant improvements in terms of better stability and faster response.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Design Mobile Application for Blood Donation System
...Show More Authors

View Publication
Scopus (2)
Crossref (4)
Scopus Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Control of Non Isothermal CSTR Using Different Controller Strategies
...Show More Authors

In all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Experimental and Theoretical Analysis of a Mono PV Cell with Five Parameters, Simulation Model Compatible with Iraqi Climate
...Show More Authors

The present work included study of the effects of weather conditions such as solar radiation and  ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the  output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Numerical Simulation of Unsaturated Soil Water Flow from a Trickle Point System, Considering Evaporation and Root Water Uptake
...Show More Authors

This research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o

... Show More
View Publication
Crossref
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Newtonian and modified newtonian gravitational simulation of spiral galaxies
...Show More Authors

One of the most powerful tools for any stellar dynamics is the N-body simulation. In an N-body simulation the motion of N particles is followed under their mutual gravitational attraction. In this paper the gravitational N-body simulation is described to investigate Newtonian and non- Newtonian (modified Newtonian dynamics) interaction between the stars of spiral galaxies. It is shown that standard Newtonian interaction requires dark matter to produce the flat rotational curves of the systems under consideration, while modified Newtonian dynamics (MOND) theorem provides a flat rotational curve and gives a good agreement with the observed rotation cu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Simulation of an ion Optical Transport and Focusing System
...Show More Authors

A simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 10 2023
Journal Name
Sustainability
Solar-Induced Photocatalytic Degradation of Reactive Red and Turquoise Dyes Using a Titanium Oxide/Xanthan Gum Composite
...Show More Authors

The present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%

... Show More
View Publication
Scopus (22)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Design and Construction of a Testing Platform and Estimating Attenuation Painting Reflectivity to Laser Beam
...Show More Authors

The project has been described the design and construction of a reliable optical testing platform used for evaluate the reflectivity of metal surfaces treated with special paintings required for laser beam attenuation. The platform comprises an Nd-YAG laser system which has been designed and fabricated with specifications to be compatible with their corresponding in laser range finder transmitters used for various applications. The reflectivity of various attenuating paintings, at different detection angles, has been observed. Moreover, the variation of the reflected energy with painting type and metal type to be painted has been studied experimentally. Results illustrated the existence of a definite angle, at which the reflectivity was max

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Design and Comparative Study of a one and Two Stage Blumlein Circuit TEA Nitrogen Laser
...Show More Authors

Two Prototypes of Transversely Excited at atmospheric pressure (TEA) Nitrogen laser systems (One Stage Blumlein Circuit and Two Stage Blumlein Circuit) were fabricated and operated. High voltage power supply with variable operating voltage (0-20 kv) and operating current (1-3A) was built and tested successfully. The gas flow rate of 15 L/ min and 10 L/ min for OSBC and TSBC was used. The performance of the fabricated systems was studied extensively reaching to the optimum operating conditions. The obtained laser output energy for the first system has linear relationship with the applied voltage. The maximum output energy was about (1.14 mJ) with (10.40) ns pulse duration and the half-wave divergence angle was about (0.1455 m rad). In the

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Design and construction of anair pollution detection system using a laser beam and absorption spectroscopy
...Show More Authors

Air pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref