The hydraulic behavior of the flow can be changed by using large-scale geometric roughness elements in open channels. This change can help in controlling erosions and sedimentations along the mainstream of the channel. Roughness elements can be large stone or concrete blocks placed at the channel's bed to impose more resistance in the bed. The geometry of the roughness elements, numbers used, and configuration are parameters that can affect the flow's hydraulic characteristics. In this paper, velocity distribution along the flume was theoretically investigated using a series of tests of T-shape roughness elements, fixed height, arranged in three different configurations, differ in the number of lines of roughness element. These elements were used to find the best configuration of roughness elements that can be applied to change the flow's hydraulic characteristics. ANSYS Parametric Design Language, APDL, and Computational Fluid Dynamics, CFD, was used to simulate the flow in an open channel with roughness elements. CFD can be used to study the hydrodynamics of open channels under different conditions with inclusive details rather than relying on the costly field and time-consuming. Runs were implemented with different conditions, the discharge, and water depth in upstream and downstream of the flume. T-shape roughness elements with height equal to 3cm placed in three different configurations, two lines, four lines, and fully rough configurations were tested. The results show that the effect of roughness elements increasing with increasing the number of lines of roughness elements. Cases of four lines and fully rough configurations have almost the same hydraulic performance by having the same results of the velocity decrease percentage, which is decreased by approximately about 66% and 61% of the control case's velocity in the zone near the roughness elements consequently. But the difference is that four lines configuration is affected in a part of the test section. This behavior increases the velocity values by about 11% in the other side and by about 10% near the free surface in the case of four lines configuration and increased by about 32% above the roughness elements in a fully rough configuration.
A theoretical analysis of mixing in the secondary combustion chamber of ramjet is presented. Theoretical investigations were initiated to insight into the flow field of the mixing zone of the ramjet combustor and a computer program to calculate axisymmetric, reacting and inert flow was developed. The mathematical model of the mixing zone of ramjet comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy and its dissipation rate. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variable at all internal grid nodes.
The results showed that increasing air mass flow (0.32 to 0.64 kg/s) increases the development o
In this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreA mathematical model has been formulated to predict the influence of high outdoor air temperature on the performance of small scale air - conditioning system using R22 and alternative refrigerants R290, R407C, R410A. All refrigerants were investigated in the cooling mode operation. The mathematical model results have been validated with experimental data extracted from split type air conditioner of 2 TR capacity. This entailed the construction of an experimental test rig which consists of four main parts. They are, the refrigeration system, psychrometric test facility, measuring instrumentation, and auxiliary systems. The conditioned air was maintained at 25 0C dry bulb and 19 0C wet bulb for all tests. The outdoor ambient air temperatur
... Show MoreArt is a language in which the artist expresses himself, his society, and the events he lives in, so new artistic trends emerged, so the artist no longer practices his art as required by any previous artistic rules. And the thoughts wandering inside him, which led him to the abstract method in which the artist tries to employ the elements of the artwork in a plastic construction through which he achieves the relationships of the abstract form through the rhythms of lines, colors, spaces, shapes and textures without these plastic elements having any connection with the visual reality.
The research aims to find a new vision inspired by the school of geometric abstraction to enrich the field of Saudi plastic painting. And to take advan
Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott
The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea
... Show More