In the current analysis, the effects of circumferential scratches along the inner surface of a 170ᵒ -arc partial journal bearing has been numerically investigated. Their impact on the thermo-elasto-hydrodynamic performance characteristics, including maximum pressure, temperature, deformation, and stress, has been examined thoroughly. The ANSYS Fluent CFD commercial code was employed to tackle the iterative solution of flow and heat transfer patterns in the fluid film domain. They are then applied to the ANSYS Static Structure solver to compute the deformation and stress resulted in the solid bearing zone. A wide range of operating conditions has been considered, including the eccentricity ratio ( ) and scratch depth ( ). In contrast, the bearing length-diameter ratio (L/D) and the rotation speed (N) have been fixed at 0.77 and 1500 rpm, respectively. The thermo-hydrodynamic pressure, temperature, stress, and deformation have all been computed. It was found that the scratch depth has a direct effect on the thermo-hydrodynamic performance of the partial bearings. Meanwhile, the deep central scratches are important, especially at scratch depth equal to 0.224 mm.
Twisted tape insertion in the smooth plain tube is one of the types of passive methods that are used to enhance heat transfer. Swirl fluid flow inside the tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with a twisted tape of twist ratio of y = (H/D) = (150/17) =8.8 along the plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nus
... Show MoreThis research aims to identify how organizational compatibility, which represents the independent variable, affects higher performance, which is considered a dependent variable, given the importance of these variables in industrial organizations and their clear impact on their stability, survival, and growth in the light of changing environmental challenges. Where the practical research problem was represented by the weakness of awareness of the importance toward organizational compatibility and its dimensions (organizational loyalty, organizational similarity, affiliation or membership, compatibility with goals, and compatibility with values), which is meant by the individual's compatibility with the organization in which he/she w
... Show More 
A potential alternative energy resource to meet energy demands is the vast amount of gas stored in hydrate reserves. However, major challenges in terms of exploration and production surround profitable and effective exploitation of these reserves. The measurement of acoustic velocity is a useful method for exploration of gas hydrate reserves and can be an efficient method to characterize the hydrate-bearing sediments. In this study, the compressional wave velocity (P-wave velocity) of consolidated sediments (Bentheimer) with and without tetrahydrofuran hydrate-bearing pore fillings were measured using the pulse transmission method. The study has found that the P-wave velocity of consolidated sediments increase with increasing hydrate format
... Show MoreIn this research we have tackled the role of Talent management (as a private variable) within (the Talent attraction, the Talent management performance, Talent development and Talent retention) on strategic performance reinforcement ( accredited variable) within its dimensions ( financial perspective, costumer perspective, internal operations perspective and learning and development perspective). The research conducted on sample of some college teachers from two of Sumer's colleges. The research problem represented by the broad organization's competition as well as universities; which led these colleges to investigate it's skillful human staff to meet it's strategic performance.
To meet the aims of
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show More