Many researchers used different methods in their investigations to enhance the heat transfer coefficient, one of these methods is using porous medium. Heat transfer process inside closed and open cavities filled with a fluid-saturated porous media has a considerable importance in different engineering applications, such as compact heat exchangers, nuclear reactors and solar collectors. So, the present paper comprises a review on natural, forced, and combined convection heat transfer inside a porous cavity with and without driven lid. Most of the researchers on this specific subject studied the effect of many parameters on the heat transfer and fluid field inside a porous cavity, like the angle of inclination, the presence of vibration, magnetic fields, and heat generation. They used different thermal and hydrodynamic boundary conditions, different geometries of cavity, and different saturated-fluids. Results manifested that the fluid and thermal characteristics enhance greatly as porosity increases at a high value of Darcy number. Also, vibrational effects are a dominant factor in the heat transfer process only at high Darcy and Reynolds numbers.
Convection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var
... Show MoreThis paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol
In this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show MoreThe effect of solution heat treatment on the mechanical properties of Aluminum-Copper alloy. (2024-T3) by the rolling process is investigated. The solution heat treatment was implemented by heating the sheets to 480 C° and quenching them by water; then forming by rolling for many passes. And then natural aging is done for one month. Mechanical properties (tensile strength and hardness) are evaluated and the results are compared with the metal without treatment during the rolling process. ANSYS analysis is used to show the stresses distribution in the sheet during the rolling process. It has been seen that good mechanical properties are evident in the alloy without heat treatment due to the strain hardening and also the mechanical
... Show MoreAbstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreThe present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreThe aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
Urbanization led to significant changes in the properties of the land surface. That appends additional heat loads at the city, which threaten comfort and health of people. There is unclear understanding represent of the relationship between climate indicators and the features of the early virtual urban design. The research focused on simulation capability, and the affect in urban microclimate. It is assumed that the adoption of certain scenarios and strategies to mitigate the intensity of the UHI leads to the improvement of the local climate and reduce the impact of global warming. The aim is to show on the UHI methods simulation and the programs that supporting simulation and mitigate the effect UHI. UHI reviewed has been conducted the for
... Show More