Unlike fault diagnosis approaches based on the direct analysis of current and voltage signals, this paper proposes a diagnosis of induction motor faults through monitoring the variations in motor's parameters when it is subjected to an open circuit or short circuit faults. These parameters include stator and rotor resistances, self-inductances, and mutual inductance. The genetic algorithm and the trust-region method are used for the estimation process. Simulation results confirm the efficiency of both the genetic algorithm and the trust-region method in estimating the motor parameters; however, better performance in terms of estimation time is obtained when the trust-region method is adopted. The results also show the possibility of extracting fault signatures from the motor's parameter values because each type of the mentioned faults has a different impact on these parameters. Under a 10% short circuit fault condition, the mutual inductance and rotor resistance deviate by almost 10% from their original values to lower values. While the stator resistance noticeably reduces by up to 20% during the open circuit fault condition.
Background: The long term survival of dental implants is evaluated by the amount of crestal bone loss around the implants. Some initial loss of bone around dental implants is generally expected. There is reason to believe that reflecting a mucoperiosteal flap promotes crestal bone loss in the initial phase after an implant has been inserted. The surgical placement of a dental implant fixture is constantly changing and in recent years, there has been some interest in developing techniques that minimize the invasive nature of the procedure, with flapless implant surgery being advocated. The purpose of this study was to compare the radiographic level of the peri- implant bone after implant placement between traditional flapped surgery and f
... Show MoreThe present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
Objectives: To determine the effectiveness of the educational program on nursing staff knowledge about infection control measures at the Intensive Care Unit in Al-Diwaniya Teaching Hospital.
Methodology: A pre-experimental design (one group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from ( 20th February to 5th March, 2020) on a non-probability (purposive) sample consisting of (25 nurses) working in ICU. A questionnaire was built as a data collection tool and consisted of two parts:
First part: The demographic characteristics of the nursing staff (age, gender, level of education, years of experien
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
Objective: To evaluate the effectiveness of educational program on female students’ knowledge toward premenstrual syndrome.
Methodology: A quasi-experimental design study conducing on (140) student purposely in four secondary schools at Al-sadder city (70) student for study group and (70) for control group. The prevalence of PMS selected through American College of Obstetricians and Gynecologists (ACOG) (2015) criterias to select PMS students before program. The education program were set in four steps, the first step (pre-test) is to assess the knowledge , before the implementation of the program, the second step is implementing the program, following two steps post-test I and II between each test two weeks. Validity is determined
Abstract: Microfluidic devices present unique advantages for the development of efficient drug assay and screening. The microfluidic platforms might offer a more rapid and cost-effective alternative. Fluids are confined in devices that have a significant dimension on the micrometer scale. Due to this extreme confinement, the volumes used for drug assays are tiny (milliliters to femtoliters).
In this research, a microfluidic chip consists of micro-channels carved on substrate materials built by using Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters have influence on the width, depth, roughness of the chip. In order to have regular
... Show MoreContinuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu
In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreContinuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu