The performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back asphalt (RC-70) and cationic medium setting emulsion (CMS), with different application rates. Six extruded cores with a diameter of 116 mm each form the prepared slab has been obtained. Core specimens were subjected to moisture damage according to the American Association of State Highway and Transportation Officials (AASHTO), after which repeated bond shear stresses and monotonic tests are practiced. It is concluded that permanent deformation increased with moisture-induction under repeated load for both interfaces and tack coat types. The (CMS) as a tack coat had less permanent deformation values than RC-70 for both interface types and all application rates. In contrast, the interface bond strength (IBS) value was higher than that for (RC-70) in both interface types after moisture conditions. The trend of the results illustrates that (IBS) decreased with moisture conditions under repeated load, as compared to samples under repeated load only.
It is commonly known that Euler-Bernoulli’s thin beam theorem is not applicable whenever a nonlinear distribution of strain/stress occurs, such as in deep beams, or the stress distribution is discontinuous. In order to design the members experiencing such distorted stress regions, the Strut-and-Tie Model (STM) could be utilized. In this paper, experimental investigation of STM technique for three identical small-scale deep beams was conducted. The beams were simply supported and loaded statically with a concentrated load at the mid span of the beams. These deep beams had two symmetrical openings near the application point of loading. Both the deep beam, where the stress distribution cannot be assumed linear, and the ex
... Show MoreThe Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was u
... Show MoreThe research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl
The visual impression represents a compound process of a group of concepts that might be secondary and interrelated to constitute, in reality, a cognitive image stored in the memory that can be retrieved according the implications of the situation in which the individual lives in his environment, as it awakens in him an image from the sub consciousness, thus it gets stimulated, and it is among the tangible things.
Since we live in our contemporary world under the development of knowledge, micro and wide technology of the devices, tools, materials, mechanisms, current developments and openness… etc. this transformation created visual impressions that the individual in general and the consumer in specific enjoys concerning his
The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MoreThis study reveals the results of a numerical simulation performed using the ABAQUS/CAE finite element program. The study aimed to provide a simulation model that can forecast the shear behavior of reinforced concrete beams confined with reinforcing meshes. Limited numerical studies have been conducted using geogrid or FRP mesh as shear reinforcement, with limited representation accuracy and limited material quality. The results were compared to published experimental findings in the literature. The finding of the finite element model and the experimental results were highly comparable; consequently, the model was determined to be valid. Following this, the domain of numerical analyses was broadened to include the investigation of m
... Show MoreSoil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show More