The world is confronted with the twin crisis of fossil fuel depletion and environmental degradation caused by fossil fuel usage. Biodiesel produced from renewable feedstocks such as Jatropha seed oil or animal fats by transesterification offers a solution. Although biodiesel has been produced from various vegetable oils such as Jatropha seed oil, the reaction kinetics studies are very few in literature, hence the need for this study. Jatropha curcas seed oil was extracted and analyzed to determine its free fatty acid and fatty acid composition. The oil was transesterified with methanol at a molar ratio of methanol to oil 8:1, using 1% sodium hydroxide catalyst, at different temperatures ranging from 32oC to 65oC, at atmospheric pressure. The order of the reactions with respect to the triglyceride's disappearance in the forward reaction at the chosen temperatures was found to be pseudo-first-order and found to be first-order for the reaction at 32oC. The rate constants of the three consecutive reaction steps at 65oC, namely, triglyceride to diglyceride, diglyceride to monoglyceride, and monoglyceride to glycerol, were found to be 0.422 min-1 0.117 min-1, and 0.037min-1, respectively. Their corresponding activation energies in J/mol were 22.165, 3.136, and 19.770, respectively.
This work evaluates the economic feasibility of various production scenarios for the Zubair reservoir in the Kifl oil field using cash flow and net present value (NPV) calculations. The Kifl field is an exploratory field that has not yet been developed or assessed economically. The first well was drilled in 1960, and three other wells were later drilled to assess the oil accumulation, so in this research, Different production scenarios were evaluated economically. These scenarios were proposed based on the reservoir model of the Zubair formation in the field. The research methodology used QUE$TOR software to estimate capital expenditures (CapEx) and operating expenditures (OpEx) based on field-level data, production prof
... Show MoreThe detection of fungi contaminating maize grain and the effect of four plant extracts Azadirachta indica, Eucalyptus globulus Glycyrrhiza glabra and Zingiber officinale on the growth of A. flavus and its ability to produce AflatoxinB1. The results showed that the incidence of Aspergillus spp., was 52.75% of the isolated fungi, of which 29.50% was due to Aspergillus flavus, followed by Penicillium spp., with an incidence of 21.06%, and then Fusarium spp., with a rate of 18.13%. The percentage of toxin-producing A. flavus isolates reached 70.8% out of 24 isolates. The results showed the effect of alcoholic plant extracts at a concentration of 10 mg/ml on the fungal growth activity of A. flavus, the alcoholic extract of neem leaves was superi
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
The research includes synthesis and identification of novel three amino acids ligands complexes of some heavy metal (II) ions by using the amino acids like glycine, L-alanine and L-valine. New metal mixed ligand complexes with amino acids are prepared the reaction by reacting the three amino acids with the metals(II) chloride by using 50% ethanolic solution and 50% distall water in the molar ratio [1:1:1:1] ( M:Gly:Ala:Val) except for Co(II) and Ni(II) complexes were found after diagnosis the coordination with both Lalanine and L-valine. The prepared complexes identified by using physical properties, flame atomic absorption and conductivity measurements, in addition, mass, FT.IR and UV.vis spectrum as well magnetic moment data. The general
... Show MoreDiazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show More1-(4-amino-3-(benzo[d]thiazol-2-yldiazenyl)phenyl)ethanone has been synthezied by reaction the diazonium salt of 2-aminobenzothiazole with 4-aminoacetophenone. Specroscopic studies ( FTIR,UV-Vis, 1H and 13CNMR) and microelemental analysis (C.H.N.S.O) are use to identified of the azo ligand. Metal chelates of some transition metals were performed as well depicted. Complexes were identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4 - 3×10-4 mol/L). height molar absorbtivity of compoun
... Show MoreIn this work, novel copolymers of poly(adipic anhydride-co-mannitol) were synthesized by melting condensation polymerization of poly(adipic anhydride) with five percentages of mannitol sugar, 1 to 5 Wt.%. These copolymers were purified and then, characterized by FT-IR, which was proved that the cross-linking reaction was caused by nucleophilic attack of mannitol hydroxyl group to acidic anhydride groups of poly(adipic anhydride) backbone and new ester groups were formed and appeared. Also, modified organic-soluble chitosan, N-maleoyl-chitosan, were synthesized by grafting reaction of chitosan with maleic anhydride in DMF as solvent, and it was also purified and characterized by FT-IR. Biodegradation in vitro of the IPNs of poly(adipic anhyd
... Show More4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show More