The world is confronted with the twin crisis of fossil fuel depletion and environmental degradation caused by fossil fuel usage. Biodiesel produced from renewable feedstocks such as Jatropha seed oil or animal fats by transesterification offers a solution. Although biodiesel has been produced from various vegetable oils such as Jatropha seed oil, the reaction kinetics studies are very few in literature, hence the need for this study. Jatropha curcas seed oil was extracted and analyzed to determine its free fatty acid and fatty acid composition. The oil was transesterified with methanol at a molar ratio of methanol to oil 8:1, using 1% sodium hydroxide catalyst, at different temperatures ranging from 32oC to 65oC, at atmospheric pressure. The order of the reactions with respect to the triglyceride's disappearance in the forward reaction at the chosen temperatures was found to be pseudo-first-order and found to be first-order for the reaction at 32oC. The rate constants of the three consecutive reaction steps at 65oC, namely, triglyceride to diglyceride, diglyceride to monoglyceride, and monoglyceride to glycerol, were found to be 0.422 min-1 0.117 min-1, and 0.037min-1, respectively. Their corresponding activation energies in J/mol were 22.165, 3.136, and 19.770, respectively.
Development and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreTwo locally isolated microalgae (Chlorella vulgaris Bejerinck and Nitzschia palea (Kützing) W. Smith) were used in the current study to test their ability to production biodiesel through stimulated in different nitrogen concentration treatments (0, 2, 4, 8 gl ), and effect of nitrogen concentration on the quantity of primary product (carbohydrate, protein ), also the quantity and quality of lipid. The results revealed that starvation of nitrogen led to high lipid yielding, in C. vulgaris and N. palea the lipid content increased from 6.6% to 40% and 40% to 60% of dry weight (DW) respectively.Also in C. vulgaris, the highest carbohydrate was 23% of DW from zero nitrate medium and the highest protein was 50% of DW in the treatment 8gl. Whil
... Show MoreBiodiesel define as the mono-alkyl esters of vegetable oil and animal fats is an alternative diesel fuel that is steadily gaining attention because the combustion of fossil fuels such as coal, oil and natural gas has been identify as a major cause of the increase in the concentration of carbon dioxide in the earth’s atmosphere and causing global warming.
The present work concerns with estimating the physical properties experimentally such as kinematic viscosity, density, flash point and carbon residue of biodiesel that produced by the esterification reaction of methanol and oleic acid with homogeneous catalysts H2SO4 in a lab-scale packed reactive distillation column using the best operating conditions of methanol to oleic acid 8:1,
Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreIraqi kaolin was used for the preparation and characterization of NaY zeolite for biodiesel production via esterification reaction. Oleic acid was used usually as a typical simulated feedstock of high acid number for the esterification reaction.
The chemical composition for the prepared Nay zeolite is as following: (Ca2.6Na1.K0.1)(Al6.3Si17.7)O48.16H2O, the silica to alumina ratio in the prepared catalyst was found equal to 2.6 and Na2O content was 12.26 wt. %, with relative crystallinity equal to 147.4 % obtained by the X-ray diffraction. The surface area result shows that the prepared catalyst has 330 m2
... Show More