Preferred Language
Articles
/
joe-120
Experimental Investigations on the Strength and Serviceability of Biaxial Hollow Concrete Slabs
...Show More Authors

Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimate load capacity ranging between (79.3% and 125%) and a decrease in the deflection at service load of about (9.8% to 12%) with respect to the control bubbled reinforced concrete slab. Also, it is found that, the bubbled slabs have about (79% to 86%) of the ultimate load capacity of a similar reference solid slab. At the same time the influence of voids present in the bubbled slabs is reflected in a decrease in the first cracking load by about (14.8% to 29.6%) in comparison with solid slabs.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Moisture Damage of Warm Mix Asphalt Concrete
...Show More Authors

Implementation of Warm Mix Asphalt concrete (WMA) is getting global acceptance due to the restrictions for protecting the environment and the requirements to reduce fuel consumption. In this investigation, two WMA mixtures have been prepared in the laboratory using medium curing cutback (MC-30) and Cationic emulsion asphalt. Hot Mix Asphalt (HMA) was also prepared for comparison. The cylinder specimens (63.5mm) in height and (101.6mm) in diameter were constructed from the mixtures and subjected to indirect tensile strength test to determine the Tensile Strength Ratio (TSR). The cylinder specimens of (101.6mm) in height and (101.6mm) in diameter were also constructed from those mixtures and subjected to static compressive

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 07 2018
Journal Name
Civil Engineering Journal
Behavior of Precast Prestressed Concrete Segmental Beams
...Show More Authors

The structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr

... Show More
Crossref (12)
Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Structural Engineering
Experimental and Numerical Evaluation of a Welded Demountable Shear Connector through Horizontal Pushout Tests
...Show More Authors

A novel welded demountable shear connector for sustainable steel-concrete composite structures is proposed. The proposed connector consists of a grout-filled steel tube bolted to a compatible partially threaded stud, which is welded on a steel section. This connector allows for an easy deconstruction at the end of the service life of a building, promoting the reuse of both the concrete slabs and the steel sections. This paper presents the experimental evaluation of the structural behavior of the proposed connector using a horizontal pushout test arrangement. The effects of various parameters, including the tube thickness, the presence of grout infill, and the concrete slab compressive strength, were assessed. A nonlinear finite element mode

... Show More
View Publication
Scopus (22)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Mathematical Modelling Of Engineering Problems
Experimental and Numerical Study of Open Channel Flow with T-Section Artificial Bed Roughness
...Show More Authors

Experimental and numerical studies have been conducted on the effects of bed roughness elements such as cubic and T-section elements that are regularly half-channel arrayed on one side of the river on turbulent flow characteristics and bed erosion downstream of the roughness elements. The experimental study has been done for two types of bed roughness elements (cubic and T-section shape) to study the effect of these elements on the velocity profile downstream the elements with respect to different water flow discharges and water depths. A comparison between the cubic and T-section artificial bed roughness showed that the velocity profile downstream the T-section increased in smooth side from the river and decrease in the rough side

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Nov 15 2020
Journal Name
Anbar Journal Of Engineering Sciences
Numerical Modelling and Experimental Investigation of Water Distribution in Stratified Soil Under Subsurface Trickle
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental and Modeling Study of Abrasive Wear of Tungsten Carbide Drilling Bit in Wet and Dry Conditions
...Show More Authors

The results of theoretical and experimental investigations carried out to study the effect of load and relative sliding speed on the abrasive wear behavior in drilling bit teeth surfaces of an insert tungsten carbide bit have been presented. Experimentally, an apparatus for abrasive wear tests conducted on the modified ASTM-G65 was modified and fabricated to facilitate loading and measurement of wear rate for the sand/ steel wheel abrasion test, which involves two cases of contact; first is at dry sand and second is under wet condition. These tests have been carried under varied operating parameters of normal load and sliding speed. A theoretical model based upon the Archard equation has been developed for predicting wear simulation by u

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Science And Research
Theoretical and Experimental Study of Nanofiltration and Reverse Osmosis Membranes for Removal of Heavy Metals from Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Analytical Study of Bending Stresses and Deflections in Curved Beam Made of Laminated Composite Material
...Show More Authors

Abstract

 

Theoretical and experimental methodologies were assessed to test curved beam made of layered   composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Journal Of Engineering
Improvement of Unconfined Compressive Strength of Soft Clay using Microbial Calcite Precipitates
...Show More Authors

The precipitation of calcite induced via microorganisms (MICP) is a technique that has been developed as an innovative sustainable ground improvement method utilizing ureolytic bacteria to soil strengthening and stabilization. Locally isolated Bacillus Sonorensis from Iraqi soil samples were found to have high abilities in producing urease. This study aims to use the MICP technique in improving the undrained shear strength of soft clay soil using two native urease producing bacteria that help in the precipitation of calcite to increase the cementation between soil particles. Three concentrations of each of the locally prepared Bacillus sonorensis are used in this study for cementation reagent (0.25M, 0.5M, and 1M) during

... Show More
View Publication Preview PDF
Crossref (16)
Crossref