The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples were taken from the Al Qadisiyiah water treatment plant. The treatment set up was in a batch mode; two parallel plates of aluminum were used as electrodes. Experimental results showed that the maximum removal efficiency of 96% for turbidity and 97% for TSS were obtained at operating time 60 minutes, voltage 30 V, and electrode spacing 1.7cm. Two models for predicting removal efficiency obtained, the first model was for turbidity with a correction factor of 94.7%, and the second one was for the TSS with a correction factor of 94.85%.
Fe3O4:Ce thin films were deposited on glass and Si substrates by Pulse Laser Deposition Technique (PLD). Polycrystalline nature of the cubic structure with the preferred orientation of (311) are proved by X-ray diffraction. The nano size of the prepared films are revealed by SEM measurement. Undoped Iron oxide and doped with different concentration of Ce films have direct allowed transition band gap with 2.15±0.1 eV which is confirmed by PL Photoluminescence measurements. The PL spectra consist of the emission band located at two sets of peaks, set (A) at 579±2 nm , and set (B) at 650 nm, respectively when it is excited at an excitation wavelength of 280 nm at room temperature. I-V characteristics have been studied in the dark and under v
... Show MoreElectro-chemical Machining is significant process to remove metal with using anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L). The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f
... Show MoreAn experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the r
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad
... Show More