Shatt al-Arab is the only navigational artery in Iraq, extending from the city of Qurna to its mouth in the Arabian Gulf at the city of Al-Fao within the governorate of Basrah for a length of approximately 204 km. Its width ranges from 400 m to 2000 m, and its depth ranges from 8 m to 20 m. The southern part of it, 93 km long from Umm al-Rassas Island to Ras al-Bisha, represents the international border between Iraq and Iran, where the Thalweg line represents the border between the two countries, which is the deepest point in the riverbed (according to the 1975 Algiers Agreement). The western bank (the Iraqi side) within the common border of Shatt al-Arab is subject to continuous erosion, which leads to the shifting of the Thalweg line towards Iraqi territory and thus leads to loss of Iraqi land to Iran. Reducing flow velocity along the Iraqi side can lead to reducing or preventing erosion in the river. Increasing the riverbed roughness will reduce the velocity of flow and then reducing the erosion. This principle was adopted in this study to investigate the effect of increasing roughness in a strip along a reach of the riverbed on the distribution of longitudinal velocity in cross-sections at the rest of the selected reach. A reach of Shatt al-Arab with a length of 2500 m, located 34 km north of Fao City, was selected to represent the study area. This reach was simulated by using numerical modeling CFD solver (fluent) with three different roughnesses for an upstream part of the river bed and the velocities compared with the natural (original) roughness of Shatt al-Arab. The results showed an appreciable effect of the increased bed roughness on the velocity distribution and the maximum velocity location by shifting it to the other side.
The mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show MoreRealistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreEmploying phase-change materials (PCM) is considered a very efficient and cost-effective option for addressing the mismatch between the energy supply and the demand. The high storage density, little temperature degradation, and ease of material processing register the PCM as a key candidate for the thermal energy storage system. However, the sluggish response rates during their melting and solidification processes limit their applications and consequently require the inclusion of heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform dimensions and distinct distribution patterns were des
... Show MoreBackground: For decades, the use of naturally accessible materials in treating human disease has been widespread. The goal of this study was to determine the anti-fungal effectiveness /of the lemongrass essential oil (LGEO) versus Candida albicans (C. albicans) adhesion to polymethylmethacrylate (PMMA) materials. Material and methods: LGEO's anti-fungal activity was tested against C. albicans adhesion using the following concentration of LGEO in PMMA monomer (2.5 vol. %, 5 vol. % LGEO) selected from the pilot study as the best two effective concentrations. A total of 40 specimens were fabricated for the candida adherence test and were subdivided into four equal groups: negative control 0 vol. % addition, experimental with 2.5 vol. % and
... Show MoreSamarium(III) ions react with (l-2(2-benzoinidazolyl-azo)-2-hydroxy-3-naphthoic acid in basic medium (pH = 8.0) forms a red-orange complex at A.max (550nm). The complex was found to be stable for at least 48 hrs. at the given pH. The apparent molar absorptivity is 7776.77 L.mol-1.Cm-1 and a linear calibration curve is obtained in the range (0.639x 10-5M - 6.350x 10 -5M). The stoichiometry of complex was confirmed by using mole ratio method which indicated that ratio of reagent to metal is 3:1. The effects of the presence of different cations and anions as interferences in the determination of samarium(III) under the given conditions were investigated
A Schiff base ligand (L) was synthesized via condensation of