Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the swelling potential of the expansive soil reduced and dramatic increases in unconfined compressive strength (UCS) value up to 3 times of its original value was reported. The results indicate that CDW is an economical solution to be used in soil stabilization whereas it is a sustainable idea to recycle constructional wastes and solve the continued need for the more landfilling area.
Slurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and
Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show MoreIn the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtain
... Show MoreOne of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreThis study was prepared to investigate the performance and behavior of concrete thrust blocks supporting pipe fittings. In the water distribution networks, it is always necessary to change the path of the pipes at different degrees or to create new branches. In these regions, an unbalanced force called the thrust force is generated. In order to counter this force, these regions are supported with concrete blocks. In this article, the system components (soil, pipe with its bend and thrust blocks) have been numerically modeled and simulated by the ABAQUS CAE/2019 software program in order to study the behavior and stability of the thrust block with different burial conditions (several b
Volcaniclastic rocks of Al Muqdadiya Formation (Pliocene) in Injana area, southern Hemrin anticline, NE of Iraq, were studied ( petrographically, physically, mineralogically and geochemically , as well as the engineering properties) to assess the suitability of volcaniclastic rocks to use them in industry as refractories. The results show that the physical and engineering properties change with the temperature change. The bulk density and the specific gravity increase by increasing temperature while the apparent porosity, water sorption and the linear shrinkage decrease. On the other hand the compressive strength increase by increasing temperature. The volcaniclastics have very low thermal conductivi
... Show MoreWaste is one of the most important problems affecting the city’s environment and its urban landscape, which results from the activities and activities of man and the natural environment. Its sources have varied between residential, commercial, industrial, medical and hazardous, and its spread in cities, on roads and on abandoned open lands, has led to significant negative effects and risks to human health and the environment.
Therefore, there were serious attempts to deal with waste and follow sequential steps that formed a waste management system such as (collection, sorting, transport, then treatment and disposal). Preventing and reducing waste, then recycling and recovering by composting or burning, and ending with bu
... Show MoreIn this research, the possibility of using waste wooden materials (reed and sawdust) was studied to produce sustainable and thermal insulation lightweight building units , which has economic and environmental advantages. This study is intended to produce light weight building units with low thermal conductivity, so it can be used as partitions to improve the thermal insulation in buildings. Waste wooden materials were used as a partial replacement of natural sand, in different percentages (10, 20, 30, and 40) % . The mix proportions were (1:2.5) (cement: fine aggregate) with w/c of 0.4. The values of 28 days oven dry density ranged between (2060-1693) kg/m3.The thermal conductivity decreased from (0.745 to 0.2
... Show MoreThe aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparis
... Show More