Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the swelling potential of the expansive soil reduced and dramatic increases in unconfined compressive strength (UCS) value up to 3 times of its original value was reported. The results indicate that CDW is an economical solution to be used in soil stabilization whereas it is a sustainable idea to recycle constructional wastes and solve the continued need for the more landfilling area.
Nanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show MoreAn extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m
... Show MoreIn this study, the amounts of activity concentrations of naturally occurring in 10 soil samples of the Tigris river and surrounding areas collected from deferent city of Baghdad have been investigated. Tigris river is an important water source for irrigation and drinking in Iraq. This study was done during 2018 in Protection Center of the Iraqi Ministry of Health and Environment using a high purity germanium detector. The resolution of (HPGe) at 2keV and 30% efficiency. The results of soil sample obtained showed that the effective activity concentration of 40K are ranged from 181.4 Bq/kg in sample S6 to 286.4 Bq/kg in S7. For Raeq values are ranged from 6 Bq/m3 in sample S5 to 17 Bq/m3 in sample S3. The obtained data revealed that the me
... Show MoreThe measurements and tests of the samples conducted in the laboratories of the College of Agriculture included isolating bio-fertilizers and testing the efficiency of isolates that fix atmospheric nitrogen and solubilize phosphorous compounds. Bacteria were isolated and identified from the rhizosphere soils of different plants collected from various agricultural areas. A total of 74 bacterial isolates were obtained based on the phenotypic characteristics of the developing colonies, as well as biochemical and microscopic traits. The results of isolation and identification showed that among the 74 bacterial isolates, there were 15 isolates of A. chroococcum, 13 of Az. lipoferum, 13 of B. megaterium, 10 of P. putida, 10 of Actinomycetes, and n
... Show MoreThe major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the ti
... Show MoreThis paper presents a brief study undertaken for improving the performance of information and communication management of construction projects through investing in information and communication technologies (ICT). The work aims at first to investigate and diagnose the problems, challenges, weaknesses, and inefficiencies related to information and communication management in projects in the construction industry of Iraq. Studying the diagnosed matters and the different solutions of ICT to improve project management performance is following the investigation process. The research presents a technological system suggested to process a lot of the diagnosed problems, challenges, weakness, and inefficiencies of the construction projects and t
... Show MoreThe research has been based on two main variables (information and communication technology) and the quality of blended education (physical and electronic), aiming to reveal the relationship between four dimensions (physical devices, software, databases, communication networks) and the elements of education represented by (the teacher, the student, the teaching process, curriculum). The methodology and post-analysis-based research were conducted at the Technical College of Management / Baghdad through polling the opinions of a random sample that included (80) teachers out of (86) and the number of students (276) representing a random sample from all departments of the college (for the morning study) out of (3500) stud
... Show MoreAn experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
Building natural period, T, is a key character in building response for wind and seismic induced forces. In design practice, the period, T, is either estimated from empirical relations proposed by the design codes or determined from analytical or numerical models. The effect of the soil-structure interaction is usually neglected in the design practice and analysis models. This paper uses a sophisticated finite element simulation to investigate the effect of soil-structure modeling on the fundamental period of RC buildings subjected to wind and seismic induced forces. A typical interior building frame has been imitated using the frame element for beams and columns with constrains to mo