Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
This study Arabic dialect prevailing in the province of Khuzestan [southwest Islamic Republic of Iran] as one of the Arabic dialects abundant qualities and characteristics of linguistic entrenched in the foot, which includes among Tithe thousands composed of vocabulary and structures and phrases classical that live up to the pre-Islamic era, if what Tasha researcher and reflect accurately the find of a large number of phrases and vocabulary and acoustic properties by nature accent, and formal, and nature of the synthetic, and characteristics semantic and contextual in this dialect studied without being something of them heavy on the tongue and without displays her tune or Tasha or distortion and so on all of which constitute a catalyst i
... Show MoreSpelling correction is considered a challenging task for resource-scarce languages. The Arabic language is one of these resource-scarce languages, which suffers from the absence of a large spelling correction dataset, thus datasets injected with artificial errors are used to overcome this problem. In this paper, we trained the Text-to-Text Transfer Transformer (T5) model using artificial errors to correct Arabic soft spelling mistakes. Our T5 model can correct 97.8% of the artificial errors that were injected into the test set. Additionally, our T5 model achieves a character error rate (CER) of 0.77% on a set that contains real soft spelling mistakes. We achieved these results using a 4-layer T5 model trained with a 90% error inject
... Show MoreThe principle in the language is that each word has one meaning. This is because the purpose of language development is for understanding, understanding, and communication between people. The language is sounds with which each people expresses their Arabic language did not stop at this point, but rather needed another next stage or to convey additional features or characteristics that would qualify it. To be the language of the Qur’an and revelation, and capable of carrying this heavy burden.
Resumen The article deals with the analysis of different ways of creating Arabic scientific terminology. Arabic scientific style includes the terminology that represents different scientific areas functioning in all Arabic countries. These ways can be classified as: giving the meaning of terms; construction of new terms according to the rules of word formation; reduction and ellipsis of terms; direct term borrowing, all the above-mentioned being subject to further analysis. Main objectives of academic style, the specific features and certain lexical and grammatical peculiarities of the Arabic scientific terminology are under consideration as well. Discussed in the paper are linguistic and extra-linguistic factors influencing the ways of sci
... Show MoreCurrent research aims to find out:
- Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
- Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.
In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:
- There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreSeveral studies have indicated an unprecedented increase in the number of Arab youth who watch music videos. It is also a custom in Arab countries to broadcast songs at their happy parties such as weddings, engagements and birthdays. We see that guests and party owners interact by dancing and singing with the songs, while the viewership rates of Arab music videos have reached millions on YouTube. The researcher decided to study the image of women through the lyrics of these songs, due to their importance in shaping the image of women in the minds of young people and shaping the (self-image) of young women. Twenty songs were selected from the most watched songs on YouTube for the year 2024, and it was found that the negative qualities of t
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More