Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
The novel coronavirus 2019 (COVID-19) is a respiratory syndrome with similar traits to common pneumonia. This major pandemic has affected nations both socially and economically, disturbing everyday life and urging the scientific community to develop solutions for the diagnosis and prevention of COVID-19. Reverse transcriptase-polymerase chain reaction (RT–PCR) is the conventional approach used for detecting COVID-19. Nevertheless, the initial stage of the infection is less predictable in PCR tests, making early prediction challenging. A robust and alternative diagnostic method based on digital computerised technologies to support conventional methods would greatly help society. Therefore, this paper reviews recent research bas
... Show MoreProviding stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show MoreProviding stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Statistics has an important role in studying the characteristics of diverse societies. By using statistical methods, the researcher can make appropriate decisions to reject or accept statistical hypotheses. In this paper, the statistical analysis of the data of variables related to patients infected with the Coronavirus was conducted through the method of multivariate analysis of variance (MANOVA) and the statement of the effect of these variables.
Simulation experiments are a means of solving in many fields, and it is the process of designing a model of the real system in order to follow it and identify its behavior through certain models and formulas written according to a repeating software style with a number of iterations. The aim of this study is to build a model that deals with the behavior suffering from the state of (heteroskedasticity) by studying the models (APGARCH & NAGARCH) using (Gaussian) and (Non-Gaussian) distributions for different sample sizes (500,1000,1500,2000) through the stage of time series analysis (identification , estimation, diagnostic checking and prediction). The data was generated using the estimations of the parameters resulting f
... Show MoreA novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio
... Show MoreIn this paper we study the selection of cognitive elements and criteria of the inflectional structure of the Russian and Arabic languages in the process of speech communication. Phonetic-physiological principle is the main parameter by which the elements and criteria of cognitive activity in the presented study are distinguished. On the basis of the above mentioned parameter, we select the investigated criteria and elements. The first criterion is semantic, reflects the accordance of the elements of thinking to sound combinations in the studied languages, and allows us to distinguish the second criterion – morphonological. The second criterion depends on the phonetic changes of these combinations occurring in the process of speech activit
... Show More