Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
... Show MoreThe present paper deals with medical terms translation and its relationship with the medical text of Arabic and Spanish. Medical translation is the process of transferring texts related to the field of health and medicine to achieve an accurate effective translation from the source language text to the equivalent target language text. The most prominent medical translations are from English to Arabic as most of the syllabuses in Arab countries are taught in English.
Translation is an innovative work intended to render the original text in the source language into the target language with the highest level of linguistic and intellec
It is known that energy subiect has ocuppied a lot of scientests minds about
how to treat the traditional energy and the renewing energy . we know that
most traditional energy coal , oil , Natural gas, neuclear fuel , are limited
guantiy and alsow subjected to be ended .Statics studies refer to reserve
of oil in world will exhausted btween ( 2075- 2100) and alsow cosl too .
While neuclear fuerl which the world seek today through explod the uranium
atom ( 233) the therum atom (239) and neuclear mxied through ruemlear
mixing , These energy have effect on environment and humanity speciaty if
they are used in militery purposes .
For all theses scientests srarch for resources of renewing enery through
researches
This study aimed to explore self and public stigma towards mental illness and associated factors among university students from 11 Arabic‐speaking countries. This cross‐sectional study included 4241 university students recruited from Oman, Saudi Arabia, the United Arab Emirates (UAE), Syria, Sudan, Bahrain, Iraq, Jordan, Lebanon, Palestine and Egypt. The participants completed three self‐administrative online questionnaires—Demographic Proforma (age, gender, family income, etc.), Peer Mental Health Stigmatization Scale and Mental Health Knowledge Questionnaire. There was a significant difference in the average mean between the 11 countries (
The current problem is summarized in what is called the development failing experience
in comprehencing the studying materials , so the students will feel worry of repeating failure
in he future , so he would seek blind keeping on heart for the studying material bond this isbad due to the forgetting in the future , one side of thesis research problem is that there is
many contradictory researches result in relation to the learning styles which impose the
nessicity to find results lessen this contradiction . the importance of the research is
summarized in the importance of the subject under the study , in that the researcher ( as in
her knowledge ) did not find a thesrs tackling the subject of the distinguished students
This study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreThe study aims at investigating the effectiveness of the Virtual Library Technology, in developing the achievement of the English Language Skills in the Center of Development and Continuous Education, in comparison with the individual learning via personal computer to investigate the students' attitude towards the use of both approaches. The population of the study includes the participants in the English Language course arranged in the Center. The sample includes 60 students who were randomly chosen from the whole population (participants in English Courses for the year 2009-2010). The sample is randomly chosen and divided into two experimental groups. The first group has learned through classroom technology; while the other group has l
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreNumerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show More