Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
The research aimed to identify and build two specialized scales for cognitive load and mental stress and to identify the level of each of them among 110-meter steeplechase runners among youth, and to prepare a psychological counseling approach to reduce the level of cognitive load and mental stress among 110-meter steeplechase runners among youth, so that the two research hypotheses are that there are differences. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring cognitive load. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring mental stress. The experimental method w
... Show MoreBuilding numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
This research attempts to shed light on a topic that is considered one of the most important topics of HRMs management, which is the Employee centric approach by examining its philosophy and understanding . To achieve the goal, the research relied on the philosophical analytical method, which is one of the approaches used in theoretical studies. The research reached a set of conclusions, the most important of which are the theoretical studies that addressed this entry in the English language and the lack of it in the Arabic language, according to the researcher's knowledge. The research reached a set of recommendations, the most important of which was that this approach needs more research, analysis and study at the practical and th
... Show MoreThe resort to the eloquence of the poetic image as a style reveals the poet's creativity and creativity in dealing with external influences, and reflect them with emotional images express a sense of intense emotional imagination, and this imagination stems from the experience of a poetic sense of truth, tasted by the recipient before the creator of the poetic text.
In the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreResearch Objectives: The research aims to highlight the approach of Imam Al-Qaradawi in contemporary jurisprudence in the recent issues of the jurisprudence of minorities, and mentioning the foundations of jurisprudence of minorities, along with some of the practical applications of Imam Al-Qaradawi.
Study Methodology: The researcher applied the inductive, analytical and comparative approach by tracking the scientific material related to the subject of the study from the books of Al-Qaradawi in the first place, then by comparing the legal provisions with what had been stated in the four schools of jurisprudence.
Findings: The interest and need of Muslim minorities in non-
... Show MoreAs tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show More