Modified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.5 g/100 ml). The-results-showed that with the Freundlich isotherm model the sorption data was accurately described with (R2≥0.94) in comparison with the Langmuir model under the studied conditions. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.
This research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the m
... Show MoreThe new novel polymers nanocomposites based modified chitosan (CS) blending with polyvinyl alcohol (PVA) and coated gold or silver nanoparticles (AuNPs), AgNPs) were synthesized from many sequence reactions as presented in (Scheme1, 2 and 3). By utilizing 1H-NMR spectroscopy, FTIR, and Field Emission Scanning electron microscope , the synthesized compounds have been identified. Molecular docking is studied, where operations are used to predict the binding status of compounds with the enzyme and to calculate the free energy (ΔG) of the compounds prepared. Also, the antibacterial activity regarding the synthesized compounds against two resistant pathogenic bacteria (G+) S. aureus and E. coli (G-) was examined in vitro compare with standard a
... Show MoreIn the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
A new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreThe purpose of this study was to evaluate the anesthetic effectiveness of a buccal infiltration technique combined with local massage (using 2% lidocaine) in the extraction of mandibular premolars to be utilized as an alternative to the conventional inferior alveolar nerve block.
Patients eligible included any subject with a clinical indication for tooth extraction of the mandibular 1st or 2nd premolars. All patients were anesthetized buccally by local infiltration technique followed by an external pressure applied for 1 min directly over the injection area. In each case, another local
The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases