Preferred Language
Articles
/
joe-1089
Optimization and Modeling the Performance of a Mediator-less Microbial Fuel Cell using Butler-Volmer-Monod Model
...Show More Authors

In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3. The BVM model perfectly expressed the bioelectrochemical reactions in the anodic-chamber. The experimental measurements for all the studied organic loadings agreed with the model predicted values by an estimated determination factor (R2) of 0.96, proving the validity of the proposed mathematical model to express the anodic bioelectrochemical reactions in the MFC. Also, the sustainable power generated from each cycle was evaluated, and it was found that higher sustainable energy can be harvested from higher organic loading 1000 g/L, which achieved maximum sustainable energy of 0.83 W/m3.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 31 2019
Journal Name
International Journal Of Ambient Energy
Energy generation by membraneless microfluidic fuel cell using acidic wastewater as a fuel
...Show More Authors

A simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Investigating the Performance of Rechargeable Zinc-Air Fuel Cell
...Show More Authors

   Zinc-air fuel cells (ZAFCs) are a promising energy source that could compete with lithium-ion batteries and perhaps proton-exchange membrane fuel cells (PEMFCs) for next-generation electrified transportation and energy storage applications. In the present work, a flow-type ZAFC with mechanical rechargeable was adopted, combined with an auxiliary cell (electrolyzer) for zinc renewal and electrolyte recharge to the main cell. In this work a practical study was performed to calculate the cell capacity (Ah), as well as study the electrolysis cell efficiency by current efficiency, and study the effective parameters that have an influence on cell performance such as space velocity and current density. The best parameters were selected to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 23 2021
Journal Name
Iraqi Journal Of Science
Effect of Organic and Non Organic Acids on the Blend PES/PS/PVDF Polymer Membranes Efficiency for Microbial Fuel Cell
...Show More Authors

     In this work proton exchange membranes were prepared by a modified microwave casting solution technique, using the polymers blend (polyethersulfone (PES), polystyrene (PS), polyvinylidenefluride (PVDF)). Modified casting method was used to overcome the poor compatibility between hydrophilic, (PES, PS) and hydrophobic PVDF, by cooling the substrate during the film casting process to (4.5-5.5oC). Membranes were chemically modified by three reaction types to study the differences between their effects on the required properties for microbial fuel cell application. These methods use blend organic sulfonic acid precasting process and sulfonation by sulfuric acid post-casting process (APS), blending organic

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Study of Microbial Desalination Cell Performance; Power Generation and Desalination Efficiency using Pure Oxygen in a Cathode Chamber
...Show More Authors

Microbial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Engineering
The Effect of Total Suspended Solids on the Electricity Generation in Microbial Fuel Cell Treating Actual Potato Chips Processing Wastewater
...Show More Authors

This study aimed to investigate the effect of total suspended solids (TSS) on the performance of a continuously operated dual-chamber microbial fuel cell (MFC) proceeded by primary clarifier to treat actual potato chips processing wastewater. The system was also tested in the absence of the primary clarifier and the results demonstrated a significant effect of TSS on the polarization curve of the MFC which was obtained by operating the graphite anodic electrode against Ag/AgCl reference electrode. The maximum observed power and current densities were decreased form 102.42 mW/m2 and 447.26 mA/m2 to 80.16 mW/m2 and 299.10 mA/m2, respectively due to the adverse effect of TSS. Also

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Ecological Engineering
Contaminants Removal from Real Refinery Wastewater Associated with Energy Generation in Microbial Fuel Cell
...Show More Authors

View Publication
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Jun 28 2021
Journal Name
Journal Of Engineering
The Catholyte Effects on The Microbial Desalination Cell Performance of Desalination and Power Generation
...Show More Authors

A microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Influence of design anode and cathode channel on (PEMFC) fuel cell performance
...Show More Authors

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Oct 07 2021
Journal Name
Bioremediation Journal
Bioremediation of real-field slaughterhouse wastewater associated with power generation in algae-photosynthetic microbial fuel cell
...Show More Authors

View Publication
Crossref (8)
Clarivate Crossref