Preferred Language
Articles
/
joe-1078
Prediction of Heat Transfer Coefficient and Pressure Drop in Wire Heat Exchanger Working with R-134a and R-600a
...Show More Authors

An experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that the average heat transfer coefficient for the R-600a was higher than the R-134a, so the length of the wire tube was longer with R-134a than R-600a. The pressure drop for the smaller tube diameter was higher than the other tube. The second law thermodynamic efficiency was higher for R-600a, which reached 41%.  The entropy generation minimization analysis showed that the R-600a refrigerant type and smaller tube diameter are approached the optimum point.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Experimental Study on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling in a Microchannel
...Show More Authors

The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 31 2020
Journal Name
International Journal Of Heat And Technology
Enhancement of Natural Convection Heat Transfer of Hybrid Design Heat Sink
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance Evaluation of Three Phase Spray Direct Contact Heat Exchanger
...Show More Authors

 

The present investigation deals with experimental study of three-phase direct-contact heat exchanger, for water-Freon R11 system, where water is the continuous phase (liquid) and Freon R11 (liquid-gas) is the dispersed phase. The test section consisted of a cylindrical Perspex column with inner diameter 8cm and 1.2m long, in which, water was to be confined. Liquid Freon R11 drops were injected into the hot water filled column, through a special design of distributors at the bottom of the column. The liquid Freon R11 drops rose on their way up and evaporated into two-phase bubbles at atmospheric pressure. The study was devoted to express the effect of process variables such as c

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Heat Transfer of Single and Binary Systems in Pool Boiling
...Show More Authors

The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.

The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Predicting of Temperature Distribution in Direct Contact Heat Transfer
...Show More Authors

An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
SOLAR WATER HEATER WITH SHELL AND HELICAL COILED TUBE HEAT EXCHANGER AS A STORAGE TANK
...Show More Authors

In this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Conversion And Management
Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles
...Show More Authors

View Publication
Scopus (234)
Crossref (228)
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System
...Show More Authors

In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Mechanical Engineering Research And Developments
Development of natural convection heat transfer in heat sink using a new fin design
...Show More Authors

Scopus (2)
Scopus
Publication Date
Wed Mar 20 2019
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of Heat Exchanger Performance by Using Dimpled Tube
...Show More Authors

The enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%.  The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran

... Show More
View Publication Preview PDF
Crossref (2)
Crossref