Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Transactions On Emerging Topics In Computational Intelligence
Reservoir Network With Structural Plasticity for Human Activity Recognition
...Show More Authors

View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Cost Reduction and Sustainable Business Practices; A conceptual approach
...Show More Authors

An excellent reputation earned by initiating and practicing sustainable business practices has additional benefits, of which are reducing environmental incidents and an improvement in operational efficiency as this has the potential to help firms improve on productivity and bring down operating costs. Taken further, with ever-increasing socially and environmentally-conscious investors and the public alike, this act of natural resources management could have a significant implication on market value and income of the practicing firms.

The above proposition has been supported by sustainable business practices literature that is continuously conversing and deliberating upon the impact of efficient resource d

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Structures
Accelerating reliability analysis of deteriorated simply supported concrete beam with a newly developed approach: MCS, FORM and ANN
...Show More Authors

Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An adaptive neural control methodology design for dynamics mobile robot
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Sun Oct 29 2023
Journal Name
Iraqi Journal Of Agricultural Sciences
ROLE OF ORGANIC FERTILIZER AND BORON FOLIAR APPLICATION ON GROWTH AND PRODUCTIVITY OF POTATO FOR PROCESSING
...Show More Authors

This research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design  with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr

... Show More
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the improvement of thermo - mechanical properties for polyester adhesive by using different fibers (glass, kevelar, and carbon).
...Show More Authors

The   mechanical    properties   of   fiber-reinforced-polymer   (FRP)

composites are dependent on the type amount, and orientation of fiber that is selected for a particular service. There are many commercially available reinforcement forms to meet the design requirements of the user. The ability of failure in the fiber architecture allows for optimized performance of a product that saves both weight and cost ( 12).

A modem technology is adopted to produce fibers (glass, kevelar,

and carbon) reinforced composite by using unsaturated polyester, where different volume fraction  of these fibers are used  (0, 0.2, 0.4, 0.6, 0.8,  I)

reinfor

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Heterogeneous Photocatalytic Degradation for Treatment of Oil from Wastewater
...Show More Authors

In the present study, advanced oxidation process / heterogeneous photocatalytic process (UV/TiO2/Fenton) system was investigated to the treatment of oily wastewater. The present study was conducted to evaluate the effect of hydrogen peroxide concentration H2O2, initial amount of the iron catalyst Fe+2, pH, temperature, amount of TiO2 and the concentration of oil in the wastewater.  The removal efficiency for the system UV/TiO2/Fenton at optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=5, temperature =30oC, TiO2=75mg/L) for 1000mg/L load was found to be 77%.

Aluminum foil cover around the re

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Asian Journal Of Ournal Of Chemistry
Assessment of an Electrocoagulation Reactor for the Removal of Oil Content and Turbidity from Real Oily Wastewater Using Response Surface Method
...Show More Authors

Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi

... Show More
Preview PDF
Crossref (15)
Crossref