Wellbore stability is considered as one of the most challenges during drilling wells due to the
reactivity of shale with drilling fluids. During drilling wells in North Rumaila, Tanuma shale is
represented as one of the most abnormal formations. Sloughing, caving, and cementing problems
as a result of the drilling fluid interaction with the formation are considered as the most important
problem during drilling wells. In this study, an attempt to solve this problem was done, by
improving the shale stability by adding additives to the drilling fluid. Water-based mud (WBM)
and polymer mud were used with different additives. Three concentrations 0.5, 1, 5 and 10 wt. %
for five types of additives (CaCl2, NaCl, Na2SiO3, KCl, and Flodrill PAM 1040) was used.
Different periods of immersion (1, 24 and 72 hours) were applied. The results of the immersion
test showed that using 10 wt. % of Na2SiO3 for WBM gives a high recovery percentage (77.99 %)
after 72 hr, while the result of the dispersion test (roller oven) of 10 wt % of sodium silicate with
WBM was (80.97 %) after 16 hr. Also, the immersion test result of 10 wt% of sodium silicate
with polymer mud was (79.76 %) after 72 hr and the results of dispersion test (roller oven) of 10
wt. % of sodium silicate with polymer mud was (84.51 %) after 16 hr.
Background: For many decades, the ECG was the
workhorse of non-invasive cardiac test and today although
other techniques provide more details about the structural
anomalies in congenital heart diseases, ECG is likely to be
part of clinical evaluation of patients with such diseases
because it is inexpensive, easy to perform and in certain
situations may be both sensitive and specific.
Objective: this study carried out to identify the pattern of
ECG study in patients with TOF.
Methods: this is a retrospective study of 200 patients
with TOF, referred to Ibn Al-Bitar cardiac center from
April 1993 to May 1999. The diagnosis of TOF established
by echocrdiographic, catheterization and angiographic
study.
ABSTRACT
A laboratory experiment was carried out during winter season of 2021 in the Seed Technology Laboratory- College of Agricultural Engineering Sciences/ University of Baghdad, to find out the allopathic effects of aerobic and terrestrial aqueous extracts of Artemisia vulgaris L. on the seed germination and seedling growth of linseed. A factorial experiment according to a completely randomized design (CRD)at three replicates was used; the first factor in clouded type of aqueous extract for two plant parts which were aerobic (stems and leaves) and terrestrial (root and rhizomes), while the second factor included five concentrations
... Show MoreIn this research we investigated the corrosion behavior of the commertialy pure titanium and Ti-6Al-4V alloy that coated with hydroxyapatite by electrochemical deposition with applied voltage (6,9,12) Volt from aqueous solution containing Ca(NO3)2.H2O =7.0 gm/l , (NH4)2HPO4 =3.5 gm/l , Na(NO3)2 = 8.5 gm/l in order to improve the bonding strength of hydroxyapetite and medical metals and alloys and increasing the biocompatibility. The coating layer morphology was investigated by XRD, Optical microscope , and SEM tests, the corrosio tests was made by use senthesys simulated body fluid (SBF) , and we found that the propreate voltage for coatint on Ti was 9 Volt and for Ti-6Al-4Vwas12Volt.
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show More