Background: For many decades, the ECG was the
workhorse of non-invasive cardiac test and today although
other techniques provide more details about the structural
anomalies in congenital heart diseases, ECG is likely to be
part of clinical evaluation of patients with such diseases
because it is inexpensive, easy to perform and in certain
situations may be both sensitive and specific.
Objective: this study carried out to identify the pattern of
ECG study in patients with TOF.
Methods: this is a retrospective study of 200 patients
with TOF, referred to Ibn Al-Bitar cardiac center from
April 1993 to May 1999. The diagnosis of TOF established
by echocrdiographic, catheterization and angiographic
study. For each patient, the ECG tracing had been analyzed
for rhythm, p-wave, P-R interval, QRS axis, duration and
T-wave in V1 and any chamber enlargement.
Results: The ECG analysis revealed that all patients had
sinus rhythm, normal P-R interval and normal p-wave
duration and amplitude, and normal QRS duration. All
studied patients had one criteria of RVH and 95% of them
had two or more of such criteria.
Conclusion: we found that in the absence of RVH
criteria, the diagnosis of TOF is unlikely and the present of
northwest axis should indicate canal type VSD
The inelastic longitudinal electron scattering form factors are calculated for the low-lying excited states of 7Li {the first excited state 2121TJ (0.478 MeV) and the second excited state 2127TJ (4.63 MeV)}. The exact value of the center of mass correction in the translation invariant shell model (TISM) has been included and gives good results. A higher 2p-shell configuration enhances the form factors for high q-values and resolves many discrepancies with the experiments. The data are well described when the core polarization (CP) effects are included through effective nucleon charge. The results are compared with other theoretical models.
Keyword: 7Li inelastic electron scattering form factors calculated with exact
One of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non
... Show MoreDue to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreThis study was designed to compare the effect of two types of viral hepatitis A and E (HAV
and HEV) on liver functions in Iraqi individuals by the measurement of biochemical changes
associated with hepatitis.
The study performed on 58 HEV and 66 HAV infected patients compared with 28 healthy
subjects. The measured biochemical tests include total serum bilirubin, serum transminases (ALT
and AST) alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT).
The study showed that adolescent and young adults (17-29) years, were mostly affected by
HEV while children (5-12) years were frequently affected by HAV. The severity of liver damage in
HEV patients was higher than HAV patients as a result of high serum transa
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More