Wellbore stability is considered as one of the most challenges during drilling wells due to the
reactivity of shale with drilling fluids. During drilling wells in North Rumaila, Tanuma shale is
represented as one of the most abnormal formations. Sloughing, caving, and cementing problems
as a result of the drilling fluid interaction with the formation are considered as the most important
problem during drilling wells. In this study, an attempt to solve this problem was done, by
improving the shale stability by adding additives to the drilling fluid. Water-based mud (WBM)
and polymer mud were used with different additives. Three concentrations 0.5, 1, 5 and 10 wt. %
for five types of additives (CaCl2, NaCl, Na2SiO3, KCl, and Flodrill PAM 1040) was used.
Different periods of immersion (1, 24 and 72 hours) were applied. The results of the immersion
test showed that using 10 wt. % of Na2SiO3 for WBM gives a high recovery percentage (77.99 %)
after 72 hr, while the result of the dispersion test (roller oven) of 10 wt % of sodium silicate with
WBM was (80.97 %) after 16 hr. Also, the immersion test result of 10 wt% of sodium silicate
with polymer mud was (79.76 %) after 72 hr and the results of dispersion test (roller oven) of 10
wt. % of sodium silicate with polymer mud was (84.51 %) after 16 hr.
Experimental tests were carried to control lost circulation in the Khabaz oil field using different types of LCMs including Nano-materials. A closed-loop circulation system was built to simulate the process of lost circulation into formations. Two dolomite plugs were used from different depths of the formation of Azkand in Khabaz oil field. The experimentations were carried out to study the effect of different types of LCMs, cross-linked copolymer (FLOSORB CE 300 S), SiO2 NP, and Fe2O3 NP, on mud volume losses as a function of time.
The rheological measurements of the nanoparticles-reference mud system showed that both of the SiO2 NP and Fe2O3 NP w
... Show MoreNew series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.
During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show MoreBackground: to evaluate the effect of different dentifrices on the surface roughness of two composite resins (nanofilled-based and nanoceramic – based composite resins). Materials and methods: Forty specimens (diameter 12 mm and height of 2mm) prepared from different composite resin materials: Z350 (nanofilled composite, and Ceram-X (nanoceramic) .they were subjected to brushing simulation equivalent to the period of 1 year. The groups assessed were a control group brushed with distilled water (G1), Opalescence whitening toothpasteR (G2), Colgate sensitive pro-relief (G3) and Biomed Charcoal Toothpaste (G4). The initial and final roughness of each group was tested by surface roughness tester. The results were statistically analyzed using
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreThe aim of this study was to evaluate the effects of local application of bisphosphonate gel and recombinant human bone morphogenic protein 2 gel, on titanium dental implant stability and marginal bone level. Twenty-seven patients with upper and lower missing posterior tooth/teeth were included in the study with a total of 71 implants that were used for rehabilitation. The implants were randomly divided into 4 groups: 3 study groups and 1 control. Group1; local application of bisphosphonate gel, group 2; local application of recombinant human bone morphogenic protein 2 gel, group 3; local application of a mixed formula of both gels. The gel application was immediately preimplant insertion, group 4; implant insertion without application of a
... Show MoreIn this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
This research studied the effects of modified BaTiO3 (BT) nanoparticles with coupling agent γ-APS (0.5wt. %) on the tensile and thermal conductivity of epoxy nanocomposites with respect to content (0.25, 0.5, 0.75, 1, 3 and 5wt. %). Multiwall carbon nanotubes (MWCNTs) at different concentration (0.2, 0.4, 0.8 and 1 wt. %) were added to the BaTiO3/epoxy nanocomposites. The influence of MWCNTs on the tensile properties and thermal conductivity was investigated. The tensile strength and Young’s modulus of BaTiO3/epoxy nanocomposites film were increased at up to 3 wt. % of added BT, but adding BT at more than 3 wt.% decreased the strength of epoxy. The tensile strength was increased with incre
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreThe investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H