BACKGROUND: Burkholderia cepacia adhesion and biofilm formation onto abiotic surfaces is an important feature of clinically relevant isolates. The in vitro biofilm formation of B. cepacia onto coated indwelling urinary catheters (IDCs) with moxifloxacin has not been previously investigated. OBJECTIVES: To examine the ability of B. cepacia to form biofilms on IDCs and the effect of coating IDCs with moxifloxacin on biofilm formation by B. cepacia in vitro. MATERIAL AND METHODS: The adhesion of B. cepacia to coated and uncoated IDCs with moxifloxacin was evaluated. Pieces of IDCs were coated with moxifloxacin (adsorption method). The spectrophotometric method was used to check moxifloxacin leaching into tubes. Coated and uncoated tubes were incubated with 107 colony forming units (cfu)/mL of B. cepacia. The viable bacterial count was used to count the number of bacteria adhered to coated and uncoated IDC pieces. RESULTS: A significant adhesion of B. cepacia to uncoated IDC pieces started 15 min after the incubation in a bacterial suspension (107 cfu/mL). A maximum adhesion was observed at 48 h. The pretreatment of IDCs with 100 μg/mL of moxifloxacin produced the best adsorption of antibiotic onto the IDCs. Coating IDC pieces with moxifloxacin significantly reduced the adhesion and biofilm formation of B. cepacia (p < 0.05) at various time intervals (1 h, 4 h and 24 h). CONCLUSIONS: The present study has demonstrated for the first time that coated IDCs with moxifloxacin reduce B. cepacia adhesion and biofilm formation. This finding has opened the door to the production of the new generation IDCs that prevent bacteria from attaching and forming biofilms.
Five isolates (25%) of Klebsiella pneumoniae were isolated from urine samples. In addition also isolated bacteria were (10) 50% Escherichia coli, while (3)15% Proteus spp., (2)10% Pseudomonas aeruginosa. The ethanolic extract of Cinnamomum zeylanicum bark were tested against Klebsiella pneumoniae by using the well agar diffusion test, the alcoholic bark extract from (200 -12.5) mg/ml possessed antimicrobial activity against tested microorganism. At 200 mg/ml, and 100 mg/ml concentrations was diameter of inhibition zone rang from (18-26mm), (14-16mm) respectively, and these results compared to antibiotics Norfloxacin(10µg) inhibition zone (24-30mm), and Cefotaxim (10 µg) (26-27mm) as
... Show MorePseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation.We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates.We identified two clinical isolates of P. aeruginosa from the sputum
... Show MoreQuorum sensing (QS) is a perfectly orchestrated molecular communication system. It is a boon for Klebsiella pneumoniae, and bane for the host. This system is believed to make K. pneumoniae a leading cause of multidrug-resistant (MDR) nosocomial infections. This study aimed to investigate the antibacterial and anti-biofilm potential of medicinal plant extracts through interfering with QS of K. pneumoniae. The effect of different concentrations of ethanolic extracts of cinnamon and clove on K. pneumoniae was determined by analyzing the growth curve, survival assay (MTT), Qualitative and quantitative biofilm formation, antibiotic resistance, along with studying gene expression of the genes encoding the above traits, using quantitative real tim
... Show Morebstract This study was performed to isolate and identify the Burkholderia cepacia from rhizosphers of different plants and study their ability to produce Siderophore, the study was also aimed to assess the antifungal activity of the bacterial filtrate and extracts of the isolates against some pathogenic fungi. The isolate which showed higher inhibitory effects was selected for extraction of some active metabolites produced by it, and evaluate the activity in vitro, via inhibition of the growth of the fungi using different concentrations of extract (50, 100, 200 )µL/ml , The results showed that out of (250) samples of soil , (8) isolates (3.2%) gave positive
... Show MoreAcinetobacter baumannii received attention for its multi-drug resistant associated with many severe infections and outbreaks in clinical environment. The aims of the study are to investigate the antibiotic susceptibility profile of clinically isolated A. baumannii, biofilm production, and the efficiency of Low Frequency Ultrasound (LFU) and honey to attenuate biofilm production. A total of 100 samples were taken from different sources from Baghdad hospitals. The susceptibility patterns revealed the percentage of pan drug resistant (PDR) isolates were 1.5 %, 72.7 % were extended drug resistant (XDR), 16.7 % were multidrug resistant (MDR), and 9.1 % were non MDR and sensitive to most antibiotics used. The ability to form
... Show MoreIn the current work, Punica granatum L. peel, Artemisia herba-alba Asso., Matricaria chamomilla L., and Camellia sinensis extracts were used to prepare manganese dioxide (MnO2) nanoparticles utilizing a green method. Energy-dispersive X-ray (EDX) analysis, Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Filed emission-scanning electron microscopy (FE-SEM) analysis were used to evaluate the produced MnO2 NPs. FE-SEM pictures demonstrated how agglomerated nanoparticles formed. According to FE-SEM calculations, the particle size ranged from 18.7-91.5 nm. FTIR spectra show that pure Mn-O is formed, while EDX results show that Mn and O are present. The ability to suppress biofilm growth in the produced MnO