The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the results showed that mixes with a larger maximum aggregate size of 19 mm exhibited better fresh properties, while mechanical properties negatively affected by using a larger maximum aggregate size. The results also showed that using steel fibers led to negative effects on fresh properties, especially with higher steel fibers content and larger maximum aggregate size. The marginal effect of steel fibers on compressive strength was noticed, while for both splitting and flexural tensile strength, significant increase was obtained with increasing of steel fibers content. The properties of SFLWSCC in the fresh state had a considerable effect on mechanical properties, whereas with the best fresh properties, the best mechanical properties can be obtained.
The toxicity effect of some heavy metals (Lead, Cadmium, Copper, and Zinc) on the growth of alga Scenedesmus dimorphus which belongs to the Division of Chlorophyta was studied and depended on the total cell number . The growth rate and doubling time were also calculated accordingly in present of absent of the the heavy metals . There were differences in toxic effects of the metals (p<0.05) . The growth was decreased gradually with alga when exposured to Lead at 15,20 and 25 mg/l in comparison with the control , mean while 30 mg/l caused an acute decrease in growth . Treating the alga with 0.05,0.1,0.5 mg/l concentration of Cadmium the number of cells decreased while at 1 mg/l the effect was more pronounced . As for Copper the conc
... Show MoreIn this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreIn this study, polymeric composites were prepared from unsaturated polyester as a base material with glass powder (fluorescent) in different weight ratios (4, 6, 8, 10,and 11%) as a support material and after comparison before and after reinforcement of the prepared composites, an increase was found. In the values of mechanical properties (hardness, compressive strength), the shock resistance values decreased, but an increase in temperature leads to an increase in the values of shock resistance, as well as the values of compressive strength And it reduces the hardness value.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreIn the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun
... Show MoreABSTRACT : Bacillus cereus and Pseudomonas aeruginosa is the ability to produce a wide antimicrobial active compounds (Bacillin and S-Pyocin) against pathogenic microorganism. In vitro assay with the antagonists of both crude bacteriocin and partial by precipitation 75% ammonium sulfate showed that the effectively inhibited growth of the following (Candida kefyer and Fusarium spp) and Propionibacterium acnes. The results showed the inhibition zone of reached Bacillin (9-13 mm), while Pyocin (13 - 16mm) in solid medium.
Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreOptical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show More