The habitat type and food availability always influence the population size of many
organisms. Bird’s feeding pattern should be abstracted to complete avian community structure
data. The agronomy main research farm of Orissa University of Agriculture and Technology
is a well-managed multi-crop agro-ecosystem which provides a suitable ground for ecological
research. In a multi-crop farmland, the association of Barn Swallow Hirundo rustica Linnaeus,
1758, with the Indian mustard Brassica juncea (L.) Czernajew, 1859 crops have been
recorded for the first time while hovering only on this field. A flock of Barn swallows was
recorded in 32 field visits while flying continuously over the Indian mustard field after
flowering to ripening of fruit in the morning and sometimes in afternoon also. The range of
the birds was recorded from 6 to 61 with a mean individual of 36.03 ± 15.37 hovering for
1.83 hr daily. This may be the behaviour for the feeding pattern of these flying insectivorous
birds which was not seen in other crop-fields with same insect diversity describing it as not
the only reason for this behaviour. To reveal this poorly understood behaviour of flying
insectivore birds, a detailed long term behavioural study with gut content analysis is needed to
explain the particular reason behind this behaviour of Barn swallows which will support the
conservation of these birds and control their population decline.
Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreSemantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show MoreMinimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during th
... Show MoreWe define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreLattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o
... Show MoreMost companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show MoreCoronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing
... Show MoreThis study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show More