The taxonomy of Ficus L., 1753 species is confusing because of the intense morphological variability and the ambiguity of the taxa. This study handled 36 macro-morphological characteristics to clarify the taxonomic identity of the taxa. The study revealed that Ficus is represented in the Egyptian gardens with forty-one taxa; 33 species, 4 subspecies and 4 varieties, and classified into five subgenera: Ficus Corner, 1960; Terega Raf., 1838; Sycomorus Raf., 1838; Synoecia (Miq.) Miq., 1867, and Spherosuke Raf.,1838; out of them seven were misidentified. Amongst, four new Ficus taxa were recently introduced to Egypt namely: F. lingua subsp. lingua Warb. ex De Wild. & T. Durand, 1901; F. pumila L., 1753; F. rumphii Blume, 1825, and F. sur Forssk., 1775. The application of the multivariate analyses in plant systematics namely the two-way clustering analysis and the principal component analysis revealed that the qualitative characters as the presence or absence of lateral peduncular or ostiolar bracts and the leaf margin delimit the differentiation of subgenera within genus Ficus. Whereas the qualitative characters of the leaf as leaf arrangement, lamina shape, length, ratio of length to width, base, apex, number of lateral veins, stipules and figs either pedunculate or sessile, shape, and width are significantly separating the species within the different sections. Seven different identification keys of the studied taxa based on the examined characters are provided. In addition, a diagrammatic key for all the studied taxa is given.
In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim
... Show MoreAbstract A description study was carried through out the present study aimed to assess health education provided by nurses to patient with gall stone "obstructive jaundice". The study was conducted at 4 teaching hospital, Baghdad teaching hospital, Al-Karama teaching hospital, Al-Yarmook teaching hospital, Al-Kendy teaching hospital where choloecystectomy was performed, in the period from first of June 2004 to end of July 2004. Data were collected through the use of questionnaire an interview from which was developed for the purpose of the present study. A non-probability (purposive) sample which was consist
Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show More