A square experimental arena with vegetation on one interior side was deployed in a Sharjah, United Arab Emirates desert. Individual darkling beetles (Coleoptera, Tenebrionidae) Akis subtricostata Redtenbacher, 1850 and Trachyderma philistina Reiche and Saulcy, 1857 were placed inside the arena at temperatures ranging between 27 - 49°C. Whether they chose the vegetated side of the arena or not was recorded, as well as how long it took for them to reach the vegetated side, if they chose it. Both species preferred the vegetated side at all temperatures, and the chance of them choosing the vegetated side increased significantly with increasing temperature (logistic regression, p = 0.0096 and p = 0.0003 for T. philistina and A. subtricostata, respectively). T.philistina and A. subtricostata always chose the vegetated side at temperatures above 31°and 44°C, respectively. Individual beetles that chose the vegetated side moved quickly and directly to it at temperatures above 30°C. Below 30°C, however, beetles tended to move slower and take more pauses within the arena. Time to reach the vegetated side declined significantly with increasing temperature (least-squares regression, p < 0.00005 for both species). A few individuals of both species died at the highest temperatures (48 - 49°C).
People with diabetes can develop different foot problems. In the blood stream glucose reacts with hemoglobin to make a glycosylated hemoglobin molecule called hemoglobin A1c or HbA1c, the more glucose in the blood the more hemoglobin A1c will be present in the blood. The HbAlc test is currently one of the best ways to check diabetes to be under control. The aim of study is to compare between the blood investigations which includes the fasting blood sugar and HbAlC (glycosylated hemoglobin), and to evaluate the benefit of HbAlc (measurement for diabetic patients with foot ulcer, to be a good indicator for controlling blood glucose). Sixty patients with type2 diabetes mellitus from the outpatient clinic of Baghdad Teachin
... Show MoreThe morphometric parameters of Acinopus (Acinopus) laevigatus Ménétriés, 1832 (Coleoptera, Carabidae) were studied and their altitudinal variability was assessed. The length of head is the most variable, and the smallest value of the coefficient of variation is observed for the width of elytra. The length of body parts (head, pronotum, elytra) were more variable compared to their width. The correlation relationship between the morphometric parameters of different parts of the body was analyzed. A high correlation was found between the elytra length (EL) and the total body length (BL) (r=0.93), and the lowest correlation was found between the elytra width (EW) and the pronotum length (PL) (r=0.57). According to all measurement indicato
... Show MoreZinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MorePrevious experimental studies have suggested that hot mixed asphalt (HMA) concrete using hydrated lime (HL) to partially replace the conventional limestone dust filler at 2.5% by the total weight of all aggregates showed an optimum improvement on several key mechanical properties, fatigue life span and moisture susceptibility. However, so far, the knowledge of the thermal response of the modified asphalt concrete and thermal influence on the durability of the pavement constructed are still relatively limited but important to inform pavement design. This paper, at first, reports an experimental study of the tensile fatigue life of HMA concrete mixes designed for wearing layer application. Tests were conducted under three different temperatur
... Show MoreThis paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results was achieved. Tool life w
... Show MoreIn this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD) technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a period of 2 hours. Effect of annealing on the structural and morphological were studied. Many growth parameters have been considered to specify the optimum conditions, namely substrate temperature (300 °C), oxygen pressure (10-2 Torr), laser fluence energy density (0.4 J/cm2), using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate (1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all nanostructures tetragonal are polycrystalline. These results show that grain size increase fr
... Show MoreChanges in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show MoreBinary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MoreA high Tc superconductor with a nominal composition
(Bi1-xPbx)2(Sr1-yBay)2Ca2Cu3O10+δ for (0 £ x £ 0.5) and (0 £ y £ 0.5) was prepared by
a solid state reaction method. The effect of the substitution of Pb for Bi and Ba for Sr and
quenching temperature on the superconductivity has been investigated to obtain the
optimum conditions for the formation and stabilization of the high Tc phase (2223).
The results showed that the optimum sintering temperature for the pure composition is
equal to 875°C and the sintering time is equal to 240h with heating and cooling rate of
60°C/h . Our results indicated that a small amount of (Ba = 0.1) could raise the transition
temperature (Tc), but enhancing Ba to 0.4 has raised